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Notation

Vector notation
Vectors will be written as a single column and will be denoted by bold lowercase characters.
We will also use the Matlab notation where a column vector is written on one line and a

semicolon is used to delimit the elements of the vector:

. 1
zeR" <= =z = : (0.1)

Tn

[z1; ...5 zn). (0.2)

Row vectors will be written on one line and a comma will be used to delimit the elements

of the vector:

2 e R = 2/ =21, ..., z,). (03)

A few special vectors, which will be defined explicitly, will be written with reversed indices:

BeRM = B=[B;...; b (0.4)

Matrix notation
Bold uppercase letters will be used to denote matrices, the corresponding lowercase letters

with subscripts ¢j will be used to denote the (i, j) entry:

a1 -+ QGlp
AeR™" — A= : : , a;; ER. (0.5)
am1 " Amn
Columns of the matrix will be denoted by the vectors ai, ..., a,, and the rows will be

denoted by the row vectors a}, ..., a/,. The transpose of the matrix will be written as AT,




Symbols

parity relation coefficients, Equations (2.23) and (2.54)
parity relation coefficients, Equations (2.36)
discrete-time state transition matrix, Equation (2.8.)
continuous-time system matrix, Equation (2.5)
detection filter system matrix, Equation (7.3)
system matrix, Equation (7.1) ‘

system matrices, Equations (7.19) and (7.21)

parity relation coefficients, Equations (2.18) and (2.58)
discrete-time input matrix, Equation (2.8)
continuous-time input matrix, Equation (2.5)
detection filter input matrix, Equation (7.3)
detection filter input matrices, Equation (7.14)
input matrix, Equation (7.1)

input matrices, Equations (7.19) and (7.21)

output matrix, Equation (2.9)

detection filter output matrix, Equation (7.15)
output matrix, Equation (7.2)

output matrices, Equations (7.19) and (7.21)

1th row of C

Equation (2.16)

Equation (2.32)

Equation (2.52)

feedforward matrix, Equation (2.9), detector gain, Equation (7.3)

detection filter feedforward matrix, Equation (7.15)
ith row of D

Equation (2.17)

Equation (2.33)

Equation (2.53)

error signal, Equation (7.4)
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J1,J2
Ly, L,

I, 0

m1(t), ma(t)
ma(t), ma(t)
n(t)

n1(t), na(t)
R

ri(k)

rij(k)

rji(k)

u(t)
u(k)
ui(k)
ua(t)
u(?)
u(n;)
u;(n;)
(1)
z(k)
zp(1)
y(t)
y(k)
vi(k)
y(ni)
yi(ni)
()

Equation (7.18)

Equation (7.16)

Equation (7.12)

arbitrary fﬁnctions of time, Equation (7.12)
arbitrary functions of time, Equation (7.16)
arbitrary function of time, Equation (7.10)
arbitrary functions of time, Equation (7.18)
Equations (2.12), (2.28), (2.40)

Equation (2.28)

field of real numbers

ith SSPR or SAPR residual, Equations (2.21), (2.56)
ijth DSPR or DAPR residual, Equation (2.37)
jith DSPR or DAPR residual, Equation (2.38)
sampling period

continuous-time input vector, Equation (2.5)
discrete-time input vector, Equation (2.8)

ith element of u(k)

actual input vector, Equation (71)
commanded input vector, Equation (7.3)
Equations (2.15) and (2.41)

Equation (2.50)

continuous-time state vector, Equation (2.5)
discrete-time state vector, Equation (2.8)

state vector, Equation (7.1)

state vectors, Equations (7.19) and (7.21)
continuous-time measurement vector, Equation (2.6)
discrete-time measurement vector, Equation (2.9)
ith element of y(k)

Equation (2.40)

Equation (2.14)

detection filter state vector, Equation (7.3)
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Chapter 1

Introduction

The requirement that a control system must be tolerant to the failuré of its components
and still perform safely and reliably puts stringent requirements on the reliability of the
components that are used. Often the requirements on the reliability are so strict that it can
only be achieved through some form of redundancy. An example is flexible space structures.
Due to their large sizes and lightweight construction they have very low damping so that
active control is necessary to do shape control and damp out vibrations throughout the
structure. Active control is also necessary to perform other tasks like stationkeeping and
attitude control. Systems in space must work for long unattended periods of time and
with long intervals between maintenance so that a control system must be able to perform
satisfactorily even when some of its components, especially the actuators and sensors, fail.
To ensure stability of the control system and continue the mission it is necessary to detect
the failure of a component. Once a failure has been detected and the failed component has
been identified, the control system must be reconfigured to isolate the faulty component

from the controller. Other examples of control systems that require very high reliability are
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aircraft engines, nuclear reactors, and process control systems, to name but a few.

To increase the reliability of a system some form of redundancy is usually used. Redundancy
can be divided into two classes, hardware redundancy and analytical redundancy. In hard-
ware redundancy the reliability is increased by replicating the control system components.
A solution that is often applied is to use three or more sensors of the same kind to measure
the same variable. A voting scheme is then employed to find the odd one out. Hardware
' redundancy has the advantage that it is insensitive to the magnitude of the failure and can
detect any type of discrepancy. Although hardware redundancy is simple to implement, it
is costly and adds unnecessary weight to the system. When many sensors and actuators are
used it becomes impractical to triphéate each device. As an example, it is estimated that
a large flexible space structure will have approximately 200 control system components.
Tripling so many components is impractical and not cost effective. Another way to increase
the reliability of a system is through analytical redundancy. Here the redundancy‘ present
in the model of the plant and input-output histories are used to detect and identify the

failure of a component.

The typical form of a failure detection and isolation (FDI) system is shown in Figure 1.1.

The FDI system is divided into two subsystems, the generation of residuals and decision

Input Measurement Failure

Decision

Plant

Residual | Residual Decision

Generator Function

Figure 1.1: FDI block diagram.

13



making, as shown in the figure. The Residual Generator uses the commanded inputs to the
plant, the measured outputs from the plant, and a model of the plant to generate a set of
residuals. The generation of residuals has been studied for many years and surveys of these
methods can be found in Willsky [14], Basseville [1], and Merrill [12]; The Decision Function
analyzes the residuals and based on this analysis makes a decision about the state of the
actuators and sensors. Typical examples of this analysis are simple threshold detectors that
compare the magnitudes of the residuals with a set of thresholds and declaring a failure
when the amplitude exceeds the threshold. Other methods are moving average analysis and
statistical decision theory. In the latter case a priori probabilities of the failure modes are
hypothesized and it is possible to optimize for a specific mode of failure. It is not always
vpossible to enumerate all modes of failure and obtain the corresponding probabilities. It
is therefore desirable to have a methodology that does not require the specification of
the failure modes and corresponding probabilities of failure. Also, the method should be
applicable to both sensors and actuators. Only two methods satisfy the requirements set
forth, the Failure Detection Filter by Beard [2] (see also Jones [6] and Massoumnia [10]) and
the method bf Generalized Parity Relations by Chow [4]. Because all analytical redundancy
methods use a model of the plant they are all sensitive to modelling errors. The design of

robust parity relations has been discussed by Lou et al. [8].

In this work we discuss the application of Generalized Parity Relations and the Failure De-
tection Filter to two experimental flexible space structures, the NASA Langley Mini-Mast
and Marshall Space Flight Center ACES mast. We concentrated on the generation of resid-
uals and made no attempt to implement the Decision Function. It should be clear from the
examples that are presented in later chapters whether it would be possible to detect the
failure of a specific component. The report is structured as follows. In Chapter 2 we derive

the equations for Generalized Parity Relations. Two special cases are treated: namely,
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Single Sensor Parity Relations (SSPR) and Double Sensor Parity Relations (DSPR). Gen-
eralized Parity Relations for actuators are also derived. Chapter 3 describes the NASA
Langley Mini-Mast and discusses the application of SSPR and DSPR to a set of displace-
ment sensors located at the tip of the Mini-Mast. ‘The performance of a reduced order
model that includes the first five modes of the mast is compared to a set of parity relations
that was identified on a set of input-output data. Both time domain and frequency domain
comparisons are made. The effect 6f the sampling period and model order on the perfor-
mance of the Residual Generators are also discussed. Chapter 4 presents failure detection
experiments where the sensor set consisted of two gyros and an accelerometer.” The effects
of model order and sampling frequency are again illustrated. The detection of actuator
failures are discussed in Chapter 5. In Chapter 6 we use Generalized Parity Relations to
monitor control system component failures on the ACES mast. Chapter7 gives an overview
of the Failure Detection Filter and experimental results are then discussed. Conclusions and

directions for future research are given in Chapter 8.
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Chapter 2

Generalized Parity Relations

In the previous chapter we gave an outline of an FDI system where, for convenience of
analysis, we divided the system into two functional parts: the Residual Generator and the
Decision Function. In this chapter we give a brief description of a method to generate
residuals. The method, known as Generalized Parity Relations, is treated in detail by

Chow [4] and Dutilloy [5].

There are two forms of analytical redundancy, namely direct redundancy and temporal
redundancy. In direct redundancy a relation is formed by taking a linear combination of
the instantaneous values of a set of sensors whose outputs are linearly dependent. As an
example, let I denote a set of sensors whose instantaneous outputs are linearly dependent
and let the jth sensor be a member of the set. We can then find a relation for the jth
output y; :

yi(t) = > (). (2.1)

i€l
i#j
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The residual is then defined as

r(t) = y;(t) = Y i) (2.2)

i€l

i#]
which will be zero (except for noise or other unmodelled effects) when all the sensors are
fully operational and nonzero in the case of a failure. Note that if r(t) is nonzero, any of

the sensors in the set could have failed — this single relation does not indicate which sensor

has failed.

In temporal redundancy, the histories of outputs and inputs are taken into account. The
following example is used to illustrate temporal redundancy: consider a vehicle with mass
m and velocity v(t) with commanded force f(t) being applied to it. The velocity at time
t + At is given by the relation

ft)

ot + At) = o(t) + £ LAt (2.3)

The velocity measurements v(t) and v(t + At) are now used together with the commanded

force to form the residual
r(t+ At) = v(t + At) — v(t) — {—S?At. (2.4)

If the rate sensor fails in some way the measured velocity will differ from the actual velocity
so that residual 7(¢+ At) will be nonzero. Thus, the nonzero residual indicates the failure of
the sensor. When the actuator fails, the force applied to the mass will be.diﬁ‘erent from the
commanded force that is used to compute the residual. Hence, the residual will be nonzero
and we can also detect the failure of the actuator. In this example, both the sensor failure
and the actuator failure result in the residual being nonzero; therefore, without additional
information we cannot determine which one of the components has failed when we observe

a nonzero residual.
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In our discussion so far we assumed that the residual is exactly zero when the system is in
perfect working condition — in a practical FDI system this will never be the case because
there will always be measurement noise, disturbances, and model mismatches. For the
example under discussion, the only parameter for the plant is the mass m and, for the
residual to have a small amplitude, the mass must be known accurately. The best we can
hope for in a practical system is a residual with a small amplitude when all the components
are functional and a large amplitude when a component has failed. Hopefully the difference
between small and large will be large enough so that a threshold detector can then be
used to discriminate between the failed and unfailed states. This example illustrates that
generalized parity relations can be used to detect sensor and actﬁator failures and that the
residual generator depends on the fidelity of the model to give a small residual when all the

components are fully operational.

In this work we will discuss only temporal redundancy relations. Furthermore, the formula-
tion of parity relations does not require the specification of measurement and process noise
models; therefore, we will not include noise in the plant model. Chow [4] treated the case

where noise is present in the system and discussed methods to obtain robust relations.

2.1 Single Sensor Parity Relations

Generalized parity relations can be constructed so that it is possible to identify which sensor
has failed. The procedure is to construct parity relations from different subsets of the sensors
so that when a sensor fails, only a subset of the parity residuals becomes larger. In this
section we will discuss a specific method that can detect and identify sensor failures. The
method, known aé single sensor parity relations (SSPR), is discussed in detail by Dutilloy [5]

and Massoumnia and Vander Velde [11]. The basic idea is to construct a set of relations
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{r;, = 1,2, ...} so that each residual r; depends on one and only one sensor y;. When
a sensor fails only the corresponding residual is affected, and it is therefore very easy to
identify which sensor has failed. In general, when an actuator fails, all the single sensor
parify relations will be affected. In this case, the Decision Function (see Chapter 1) will
decide that it was not all the sensors that have failed simultaneously as this is unlikely to

happen.

We will assume that the plant can be modelled accurately by a continuous-time, linear,

time-invariant model given by

2(t) = Acx(t)+ Bou(t), (2.5)
y(t) = Cz(t)+ Du(t), (2.6)

where z(t) € R is the state vector, u(t) € R™ is the commanded input vector, y(t) € R™
is the measurement vector, and A, € R"*"% B, € R**" C ¢ R™*" and D € R"*"

are the usual continuous-time state-space matrices. When a seunsor fails the output can be

modelled by

y(t) = Ca(t) + Du() + £(2), (2.7)

where the vector f(t) is an unknown function of time. This simple model is adequate
to describe many failures that occur in practical systems and is discussed in more detail
by Jones [6] and Massoumnia [10]. We will make no attempt to characterize f(t); an
important property of generalized parity relations is that no failure modes and corresponding
probabilities of failure need to be specified. It is important to notice that the output given

by Equation (2.6) is modified in some sense when a sensor fails.

The construction of generalized parity relations requires a discrete-time model of the sys-

tem. Let T, denote the sampling period. If the input signal u(¢) is constant over the
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interval kT, <t < (k + 1)T5, the continuous-time system of Equations (2.5) and (2.6) can

be discretized as follows:

Ts
2((k+1)T)) = e*Toa(k)+ / AT B dr u(kT,)
0]

= Axz(k) + Bu(kTy), (2.8)
y(kTs) = Cz(kTs)+ Du(kT,), (2.9)
where
A = ATs, (2.10)
Ts
B = / AT=1 B dr (2.11)
0

The notation z(k), y(k) and u(k) will often be used to donate x(kTs), y(kT;) and u(kT;)

respectively.

Consider now the ith sensor output y; and let ¢! and d} denote the ith row of C and D
respectively; the output history is easily obtained in terms of the initial state (k) and
inputs u(k), u(k +1), ... as

vi(k) = cz(k)+ diu(k),

yilk+1) = cdAz(k)+ ciBu(k) + dju(k + 1),

yi(k +2) ciA%x(k) + ctABu(k) + ¢! Bu(k + 1) + dlu(k + 2),

vi(k+mn;) = ciA™az(k)+ciA™ ' Bu(k) + -+ ciBu(k + n; — 1) + dlu(k + ny).
(2.12)

These equations can be written in a compact form as follows:

yz-(ni) = Czic(k) + Diu(n,'), (2.13)
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where

vi(ni) = [wi(k); wilk 4+ 1); -..; ik + )], (2.14)
u(ng) = [u(k); w(k+ 1) ...; u(k + ni)), (2.15)
C = e cA; . .5 el A™M), (2.16)
d, 0 0 .. 0
c.B d. 0 ... 0
D; = c/AB 9 : d o0 (2.17)
A% 1B clA%TIB A™TPB ... d!

with y; € RM11 y e ROt ¢ ¢ ROWHDXns and D; € RutD)x(rit1)nu  Note that the
Cayley-Hamilton theorem assures that C; will be singular for n; > ng. If n; is chosen large
enough so that the matrix C; becomes singular, we can find a vector 3; € R™*! in the left

null space of C; so that
BTG = 0, _ (2.18)

B;

[Bimnis Bimi=15 -5 Big; 1, (2.19)

where we have scaled the vector so that last element, Sy = 1. The reason for this choice will

become clear later. If the system is observable from the ¢th sensor, n; = n,.
Multiplying Equation (2.13) by 87 and rearranging we get
BTy;(n:) — BT Diu(n;) = 0. (2.20)

Equation (2.20) is called the ith single sensor parity relation. When the sth sensor fails, the

output equation is modified in some unknown way so that the above relation will not hold.
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We define the ith residual as

ri(k+mni) = Blyi(ni)— Bf Diu(n;)
= Byi(ni) — alu(n) (2.21)

= Tiy—Tiy (2.22)

where 7; , is the contribution of the ith output, r;, is the contribution of all the inputs and

T
= o1 @izng -3 Qimnens lni—15 Q215 5 Qingni-13 *
Q41,05 ¢4,2,07 «- -3 ai,nu,O]a (2-24)

a; € ROt)"e  When all the sensors and actuators are fully operational, the mddel matches
the plant exactly, and there are no measurement noise and disturbances, all the residuals
riyi=1,2,..., ny Will be zero. When the ith sensor fails, 7;(k¥) will be nonzero and because
the residuals r;(k), 7 # 4, are not functions of the ith sensor, they will remain zero. Thus it
is possible to detect and identify the failure of the ith sensor. Equation (2.21) has the form
of a multi-input single-output finite impulse response filter and both the system input vector
u(k) and the scalar.output yi(k) are inputs to the residual generator. A block diagram of
the SSPR Residual Generator is shown in Figure 2.1. Because the system under discussion
is time-invariant the starting time is arbitrary. Using this property and Equations (2.19)

and (2.24), we can rewrite Equation (2.20) as summations,

e Ty 7Tig
Z Bisyi(k—s) = E E 0 p st (kK — 8) (2.25)
s=0 r=1s=0

which is an ARX model for the system. (ARX = autoregressive with external input.)
The ARX description motivated the choice for 8o = 1 as this gives a monic denominator

polynomial for a single-input single-output system. If we can find an ARX model for the
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1 . Residual }—— 7;
Generator

U

Figure 2.1: Block diagram of SSPR Residual Generator.

plant we do not need to find the state-space matrices. Many system identification techniques
immediately' identify an ARX model from input-output data; see for example Ljung [7]. We
can, therefore, use standard system identification techniques to identify the coefficients of
Equation (2.25) and simply rearrange the equation to obtain a parity relation. Seen in
another way, constructing a robust parity relation is. equivalent to finding a robust ARX

model for the plant.

2.2 Double Sensor Parity Relations

In some practical cases single sensor parity relations do not provide a reliable indication of
sensor failures. By using combinations of two or more sensors it is possible to construct more
complex parity relations. The different combinations must be selected so that it would still
be possible to identify which sensor has failed. One such method, which will be referred to
as double sensor parity relations (DSPR), combines the outputs of two sensors. The double

sensor parity relations are derived as follows: let the ¢th and jth measurements be given by

yi(kTs) clx(kTs) + diu(kTs), (2.26)

yj(kTs)

fi

cix(kTs) + diu(kTs), (2.27)
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where ¢;, ¢/, d; and d;- are the ith and jth rows of C and D respectively. Similar to the
single sensor case, we write down a set of equations that relates consecutive outputs with

an initial state and the inputs to the system:

yi(k) cla(k) + du(k),

yi(k) = csa(k) + dju(k),
yi(k+1) = clAz(k)+ clBu(k)+ dju(k + 1),

yi(k+1) = cjAz(k)+ c;Bu(k)+ dju(k + 1),

yi(k-{»ni — 1) = c;‘An‘—lm(k)+C§An‘"2Bu(k)+°°'+d:~’u(k-|-ni - 1)’
yik+n;) = LAY @(k)+ GAM I Bulk) + -+ dlulk + n;),
vi(k+n;) = clAMx(k)+clAM 1 Bu(k) + - - + diu(k + n;), (2.28)

where we assume that n; = n; 4 1. These equations can again be written in a more compact
form similar to Equation (2.13) but, to simplify notation, we will first reorder the equations

so that all the equations involving y; appear first. We then have

¥;(n:)
= Cija:(k) + Diju(ni), » ~ (2.29)
Yj(nj)
where
vi(ni) = [y(k); vi(k+1); .. o; gk + ni)), (2.30)
yi(ni) = [yi(k); yi(k+1); .5 yi(k +n5)l, (2.31)
G = lejclA;...5 clA™; ¢l chA; ... ehA™), (2.32)
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D; = , (2.33)

where D; and D; are defined by Equation (2.17) with n; + 1 and n; + 1 rows respectively.
Because we have assumed that n; is one less than n;, the last n, columns of D; will be zero
because y;(k + n;) does not depend on u(k + n;). The condition for constructing a double
sensor parity relation is given by Chow [4]: the observable subspaces of the ith and jth

sensors must overlap. Assuming this is the case, we can find vectors 3; and 3; so that
187, B71G; = o. (2.34)

Multiplying Equation (2.29) with [B], 87 ] we get the ijth double sensor parity relation

n§ nj Nu T
STBi ik =)+ B .ui(k—8) = D> aijrstur(k—s) =0, (2.35)
s=0 s=1 r=1 s=0

where

Qg = [ﬁ;r, IBJT]D” (2.36)

A block diagram of the DSPR Residual Generator is shown Figure 2.2. If either the ith or

Yo —*
Yj ——— DSPR
u; ——  Residual —— 7y
: Generator
Up,, —

Figure 2.2: Block diagram of DSPR Residual Generator.

the jth sensor fails the above relations will not hold; we define the ijth DSPR residual 7;;
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as

ng ny ny Ny
rii(k) = Zoﬁi,syi(k ~8) + Z;ﬁ‘,syj(k ~8) - z_; anijﬂ‘,sur(k - 5). (2.37)

In general, when the ith sensor fails, the set of residuals r;, i < ¢ < ny and 7, 1 <p<i

will all be nonzero. This set uniquely identifies the ith sensor.

If, instead of using the ith measurement as the last row in Equation (2.28) we use the jth
measurement, n; will equal n; + 1 and we get a dual relation and residual. We will refer to

these as the jith DSPR and residual respectively. The residual in this case is

n§ 7 Ty Ny My
ri(k) = D Bigwilk—=s)+ D Biuilk—8) =D > ajirsulk—s). (2.38)
s=1 s=0 r=1s=0

2.3 Actuator Parity Relations

In the example at the beginning of this chapter we have shown that generalized parity
relations can be used to detect actuator failures. Dutilloy [5] has shown how to construct
actuator parity relations given the discrete-time system description, Equations (2.8) and
(2.9), for the case D = 0. The case where D is nonsingular will be treated here. To construct
the actuator parity relations we again find the output history as in Equation (2.12) but now
we must use the same number of sensors as actuators, i.e., we must use a subset of sensors
so that ny = n,. The reason for this requirement will become clear later in the derivation.
We will assume that this is the case and that the output is given by Equation (2.9). The

set of output equations can be written as a matrix-vector equation

y(n;) = Ca(k)+ Du(n;), (2.39)

where

yini) = [yk); y(k+1);...; yk+n)l, (2.40)
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u(n;) = [w(k); u(k+1);...5 w(k+ n;)] (2.41)

= [ur(k); ua(k); .. o5 Uny (k); wa(k+ 1); ua(k +1); .. o5 tn, (B +1); -+

uy (k +n); ua(k 4+ n0); o5 wny (K + n5)), (2.42)

C = [C;CA;...; CA™], | (2.435
D 0 0 ... 0
CB D 0 ... 0

D = CAB CB D e 0| (2.44)
CA™-'B CA™™ B CA™ B ... D

y € Rvitlny ) ¢ Rit)ne ¢ g RutnyXne  and D ¢ R +nyX(ni+1)ne Because we
have chosen n, = n,, the matrix D will be square. Assuming D is invertible, we can multiply

Equation (2.39) by D! and after rearranging we get
u(n;) = (=D O)a(k) + D7t y(ny). (2.45)

This equation is similar to Equation (2.13) with the roles of the outputs and the inputs
interchanged. By proceeding as before, we can construct single actuator parity relations
(SAPR) and double actuator parity relations (DAPR). A little more work is necessary for
the actuator case because u(n;) contains all the elements of the input in an interleaved
way as shown in Equation (2.42). For example, if we want to construct a SAPR for the
ith actuator, we must form a vector of inputs that has only u;’s as elements, starting with
u;(k) and taking every n,th element of u(n;). In order to refer to the rows of D~'Cand D!

in an easy way we define the following temporary matrices

C = -DIcC (2.46)
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~1

. - ~I
= [Cl, ooy c(n.'+1)nu] )

Sl
I

D—l

= [“’/1; ey ~/(n.'+1)7W] )

We can now set up equations similar to Equation (2.12) for the ith actuator,

ﬁi(ni)

Oy

We now find a vector «;

= [ui(k); wi(k+1); ..., uwi(k + n;)]

Giz(k) + Diy(ny),

~l. ! . .ot i+1)X
= [C,L', Ci+nu, ooy Ci+nun',] € R(n + ) ’ﬂa:,
— J’ Jl . . J/. € R(n.'-i-l)x('n.'-{-l)nu
- 19 Pidngr c 0y Widngng .
so that

a,TC,' =0.

The 7th SAPR residual is defined as

ri(k)

where

Bl = ofD;

= of Diy(n;) — aTa(n;)

= Biy(n) - ala(n))

Ny nyg Ty
= Z Zﬁi,r,syr(k —8) = Z ai,su’i(k - 5)’
r=1s=0 s=0

[ﬁi;lﬂzi; ﬂi12:ni; A '; ﬂiynuy"“; ﬂiylyni_l; ﬁiy21ni—l; ‘e ’; ﬁi,nu,n,‘—l; T

ﬂi,l,o; ﬂi,z,o; ceey ﬂi,n..,o],

(2.47)
(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)
(2.56)

(2.57)

(2.58)

(2.59)

Because of the requirement that n, = n,, it was found that there is usually more than

one vector in the left null space of C;. These vectors give true parity relations (see Lou
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et al. [8]) as they all satisfy Equation (2.54) exactly. It is not clear at this point how to
select between the different vectors, and whether one is necessarily “better” than another.

A block diagram of the SAPR Residual Generator is shown in Figure 2.3.

SAPR
Residual +——— 1,
Generator

Figure 2.3: Block diagram of SAPR Residual Generator.

In a similar way we can construct DAPR of the form r;; and r;;. Although we will show
experimental DAPR results, we will not derive the equations here as the procedure leading

to the results is analogous to the single actuator case.

2.4 Example

To illustrate some of the ideas discussed in the foregoing sections, we present a simple
example of a second order system. Many practical systems, including the Mini-Mast which
we will discuss in more detail later, are described by the following m-mode state-space

model

A, O B,

2(t) = e+ | lue (2.60)
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where

0 1 .
A = , =1, y M,
~wf =2Gw;
(0 o
B; = , 1=1,...,m,
o\ b e big,

(2.61)

(2.62)

where w; is the natural frequency of the ith mode with correéponding damping ratio {;. We

will analyze only one of the second order blocks. In order to simplify some of the hand

calculations we will further write the continuous-time state-space model in the observable

canonical form (see Chen [3])

2
0 —w;

3w

(1) (t) + u(?),

1 —2(w, 0

y(1) = [0 1]=()

= Clill(t).,
The following parameters will be used:

sampling period Ts = 0.015 seconds,
natural frequency w, = 5 rad/s (0.8 Hz),

damping ratio ¢ = 0.01.

The discretized system is given by
0.9972 -0.3774 0.3746

z(k+1) = z(k) + u(k)
0.0150  0.9957 0.0028
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(2.63)

(2.64)

(2.65)



= Axz(k)+ bu(k), (2.66)
y(k) = [0 1z(k)
= c'z(k). (2.67)

We can also write this single-input single-output system as a difference equation

y(z) = (zI- A)tbu(z) (2.68)
_ e,
- d(Z) ( )

bo1271 + (a1by1 — a11bg1)z2 u
1= (a11 + az2)z~ ! + (ay1a22 — a12a91)272

(2)

0.0028102~1 + 0.00280822
T 1-1.9928832"1 + 0.9985012—2 %" (2.69)

The difference equation describing the system is

y(k) — 1.992883y(k — 1) + 0.998501y(k — 2) = 0.002810u(k — 1)+ 0.002808u(k — 2). (2.70)

The SSPR residual is easily found as

2 2
r=> Bylk—s)- E asu(k — ), (2.71)
s=0 s=1
where
B = [0.998501; —1.992883; 1], (2.72)
a = [0.002808; 0.002810; 0]. (2.73)

Note that ag = 0; this is expected because there is no direct feedforward from the input to
the output. The plant and Residual Generator are shown schematically in Figure 2.4. Note
that the transfer functions of the Residual Generator are the numerator and denominator
of the transfer function of the plant — the residual is formed by multiplying the output

y(z) by the denominator polynomial, the input u(z) by the numerator polynomial, and
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Residual Generator

Plant

. ne) |y | N

Figure 2.4: Block diagram of the plant and SSPR Residual Generator.

subtracting the latter from the former. The transfer functions for this Residual Generator
are shown in Figure 2.5. The transfer function from y to r has a large magnitude at high
frequencies. This will always be the case for practical systems as they have a natural roll-off

at high frequencies. The high gain at high frequencies can be a source of trouble if we have

noisy sensors or unmodelled high frequency dynamics.

The coefficients multiplying the input sequence are very small — it was first believed that
this is due to the small damping in the system but it is easily shown that this is not
necessarily the case. By repeating the above example and changing the damping ratio by a

factor of ten to ¢ = 0.1, we get the following coefficients:

¢ 12%) ay

0.01 | 0.002808 | 0.002810

0.10 { 0.002783 | 0.002797

The discretization step was also carried out symbolically and the detail can be found in
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Figure 2.5: Transfer functions of the SSPR Residual Generator. The transfer
functions are periodic and are shown up to half the sampling frequency.

Appendix A. We see that the elements of the A and B matrices have factors like e‘c“’"TS,
cos(wn/1 — (2 T) and sin(wn /1 — C2 T,). The small c;)efﬁcients are a result of the product
of ¢, wn, and T}. Even if we had a larger damping ratio ¢, these elements of a will still be
small because T is small. For a given practical system we have no control over ¢ and the

only parameter that we can vary (to a limited degree) is the sampling period.

For the single-input single-output case, the single actuator parity relation is identical to the

single sensor parity relation. Therefore, only one relation exists and it is not possible to
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determine from a nonzero residual alone whether it was an actuator or sensor failure.
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Chapter 3

Displacement Sensor Failure

Detection

3.1 Introduction

In this chapter we discuss a series of failure detection experiments that were conducted on
the Mini-Mast. Specifically, we will look at the detection of displacement sensor failures of
the Mini-Mast and discuss several factors that influence the performance of the Residual
Generators. We Wﬂl. also compare parity relations obtained from a state-space model with
parity relations identified directly on a set of input-output data. The parity relations
obtained from the state-space model will be referred to as the model-based relations and
those obtained by identification as the identified relations. First, we give a brief description

of the Mini-Mast.

The Mini-Mast is an experimental truss at the NASA Langley Research Center, Hampton,
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Virginia. The mast is deployed vertically and is rigidly fixed at its base. It has 18 bays,
each of length 1.12 meter (3.68ft); the total length of the mast is 20.16 meters (66.14ft).
The bays are numbered 1 through 18, with Bay 18 at the top. The mast has three member
types: longerons, battens, and diagonals. Longerons are parallel to the vertical axis and
provide beam stiffness and strength in bending. Battens are in the beam face planes and
provide stability. Diagonals, also in the beam face planes, provide stiffness and strength
in torsion and shear. The mast is shown schematically in Figure 3.1. The truss has 57
corner joints with stainless steel pins that allow the longerons and diagonal members to be

hinged, so that it is possible to retract and deploy the mast. Three torque wheel actuators

~—Bay 18
Segor 2
4
X Sensor 3
Sensor 1
- Y
V4
X
Y

Figure 3.1: Schematic diagram of the Mini-Mast and orientation of the dis-
placement sensors. The sensors measure displacements normal to their surfaces,
relative to a fixed structure. .
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are mounted at the tép of the mast parallel to the XYZ axes. By applying voltages to
these motors, it is possible to apply torsional and bending torques to the mast. These
actuators were used in the failure detection experiments to excite the mast. The mast is
also instrumented with a full set of accelerometers, rate gyros, and displacement sensors.
Tl;e displacement sensors are mounted so that each measures displacements normal to its
reference surface, and relative to a fixed structure that is built around the mast. Three

displacement sensors are mounted at each bay but only the three sensors at Bay 18 were

used.

A finite element model for the Mini-Mast has been developed by NASA to analyze the modal
frequencies and mode shapes. A brief summary is given here; detail can be found in Pappa et
al. [13]. The first two modes are the first bending modes, oriented in the X and Y directions.
The natural frequencies of these modes are approximately 0.65Hz. This is followed by the
first torsion mode with a natural frequency of approximately 4.4Hz. The fourth and fifth
modes are the second bending modes with natural frequencies of approxjma,tely 6.2Hz. The
directions of the second bending modes are rotated by 45 degrees from the XY directions,
thus coupling the bending responses. The first and second of 108 local modes, caused mainly
by the diagonal members, have natural frequencies of approximately 14.8 Hz. Other modes
are: second torsional at 20.86Hz, third bending modes at 29.79Hz énd 30.94Hz, third
torsional at 38.83Hz, fourth bending modes at 40.12Hz and 43.41Hz, fourth torsional at
54.30Hz, fifth bending modes at 66.34 Hz and 70.25 Hz, and fifth torsional mode at 71.88Hz.
The state-space model used to generate the model-based parity relations included the first 5
modes of the system; the modal frequencies and damping ratios used are shown in Table I.
The state-space model was obtained by Drs. Raymond Montgomery and David Ghosh of
NASA Langley Research Center by an analysis of input-output data in preparation for

the design of a control system for the Mini-Mast. The state-space matrices are given in
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Appendix B.

Table |. State-space model modal frequencies and damping ratios

Mode ¢ w [Hz] | w [rad/s]

First bending 0.0323 | 0.8559 5.3778
First bending 0.0213 | 0.8547 5.3702
First torsional | 0.0717 | 4.2933 | 27.0133
Second bending | 0.0238 | 6.1186 | 38.4440

Second bending | 0.0100 | 6.1669 | 38.7478

Several experiments were conducted on the Mini-Mast to obtain input-output data séts.
The mast was excited by driving the torque wheels with random signals. For the experi-
ments discussed in this chapter, the input signal amplitudes were independent, identically
distributed with a uniform probability density function. The sampling period T was 15 ms.
This is a baseline sampling period that will be used by the control system for the mast.
The input signals were held constant for four sampling periods, i.e., for 60 ms. This choice
gave the freedom to simulate different sampling periods when analyzing the sensor parity
relations. Unfortunately, keeping the amplitude constant for more than one sampling pe-
riod but taking samples every sampling period results in a signal with a spectrum that
has zeros at frequencies lower than half the sampling frequency. A typical spectrum of an
input signal that was held constant for four sampling periods but that was sampled every
sampling period is shown in Figure 3.2. Fortunately, due to nonlinearities of the actuators

and joints of the Mini-Mast, no zeros occurred in the output spectrum.
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Figure 3.2: Spectrum of the input signal. The input was held constant for 4 sam-
pling periods (47T) but samples were taken every sampling period, T = 15 ms.

The three displacement sensors at the tip of the mast will be referred to as Sensor D1, Sen-
sor D2 and Sensor D3 with corresponding measurements y;, y2 and y3 and SSPR residuals
r1, 7o and r3. The transfer functions from the ith measurement y; to the ith residual r; will
be called B;(z) and the transfer functions from the inputs uy, ..., %n, to r; will be denoted
by Aii1(2), ..., Ain.(2). In some experiments we will use an increased sampling period of
30 ms, which is twice the baseline sampling period; this will be referred to as 27;. The order
of the parity relation, n; in Equation (2.25), will be referred to as the number of lags. Note
that for n; lags we are actually using n; + 1 samples of the corresponding measurement:
n; past values plus the current sample. Corresponding to the 10 dimensional state of the

state-space model used, the model-based parity relations incorporate 10 lags.
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The spectrum of y; is shown in Figure 3.3. In this figure we clearly see the first bending mode
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Figure 3.3: Spectrum of Displacement Sensor 2.

at approximately 0.9 Hz and the first torsiénal mode at 4.3Hz. The peaks in the spectrum
at 12.6Hz, 13.9Hz and 16.6Hz correspond to the local modes. The second torsional mode
is at approxjrna’gely 21.4Hz. Further, though the input signals have zeros in their spectra
(see Figure 3.2), they do not show up in the spectrum of the output signal. Note that 256
point DFTs were used to compute these spectra so that we do not have very fine spectral
resolution. The spectra of the other two displacement sensors are similar in nature to the
one just shown and will not be shown here. When we refer to a particular behavior of a
residual later in this work only one example will be given to illustrate the point. If a specific

example does not represent all the sensors it will be noted explicitly.
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Failures of the sensors were simulated in the data by modifying the recorded data. In most
of the examples that we will discuss the sensor is failed to zero by simply zeroing the output
data. (See Equation (2.7) for thé modelling of failures.) We will also choose the failure
times to be approximately in the middle of a plot so that it will be easy to compare the

amplitude of the residual before and after the failure.

3.2 Model-based Single Sensor Parity Relations

Figure 3.4 shows the failure of Sensor D1 that has failed to zero at sample number 213.
The failure is clearly indicated by the large transient in the residual. In this figure we also
see a behavior that was typical for all model-based residuals for displacement sensors: the
residual has a large amplitude while the sensor is in perfect condition followed by a smaller
amplitude when the transients excited by the failure are gone. In Chapter 2 it was shown

that the inputs to the ith Residual Generator are all the control inputs and, for single

e

sensor parity relations, the ith measurement. Equation (2.22) further shows that the ¢th
residual 7; has two components r;, and r;,, corresponding to the ith measurement and
all the inputs. The residual is defined as the difference between these two components.
Therefore, except for noise and unmodelled effects, we expect these two components to be
equal. Plotting the components ry , and r;,, separately in Figure 3.5, we see that this is not
so. The component 7y, has a much larger amplitude than 71, and there is no similarity
between the two components. At first it was believed that this discrepancy is due to the
small damping of the mast but the example at the end of Chapter 2 clearly indicates that
this is not the reason. This difference in amplitude of the two components explains the
previously mentioned behavior that the residual amplitude is large while the sensor is fully

operational and small when the sensor has failed. The reason for the mismatch will be given
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Figure 3.5: Components r; , (top) and ry,, (bottom) of model-based SSPR ry.
Sensor D1 has failed to zero at sample number 213.
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when we discuss the transfer functions of the Residual Generator.

The SSPR residual r3 is shown in the top of Figure 3.6. In this example Sensor D3 has
failed to zero at sample number 235. As before, we see a large transient when the failure
-occurs. The bottom of Figure 3.6 shows the same residual, but this time Sensor D3 has
failed at sample number 234, one sample (15 ms) earlier. Although a brief pulse is visible,
we did not get a clear failure signature and the spike could have been caused by noise.
This inability of the model-based single sensor parity relations to give a clear indication
of sensor-off failure modes occurred often and the reason for the poor performance will be

explained later. We now show a different failure mode,

A noisy sensor was simulated by adding white noise to the output of Sensor D2. The
plot at the top of Figure 3.7 shows the output of Sensor D2 with noise added to it from
sample number 240. The standard deviation of the noise was one hundredth that of the
standard deviation of the measurement y,. The effect of the noise is barely visible in the
measurement. The corresponding SSPR residual, 72, is shown in the bottom of Figure 3.7.
The failure is clearly indicated by the residual. So the added-noise failufe mode is clearly
detected by the parity relation. However, this extreme sensitivity of the residual to noise
can be a problem when we are working in a really noisy environment. Before we discuss
the transfer functions of the Residual Generators we first turn to parity relations identified

on input-output data.
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Figure 3.6: Top: model-based SSPR r3 when Sensor D3 has failed to zero
at sample number 235. Bottom: the same residual when Sensor D3 failed at
sample number 234, one sample earlier.
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3.3 Identified Single Sensor Parity Relations

It was noted in Chapter 2 that single sensor parity relations correspond to an ARX model
of the plant. Using a different set kof input-output data, the coefficients of the parity relation
(see Equation (2.25)) were identified using a least squares criterion. The length of the data
set was slightly less thaﬁ 30 seconds. These parity relations, which will be referred to as

identified relations, were applied to the same data used in Section 3.2. Figure 3.8 shows

x105
T T { T
4r i
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‘E" 0
)
. _
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1 1 1 I
0 100 200 300 400 500
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Figure 3.8: ldentified SSPR residual r3. Sensor D3 has failed to zero at sample
number 234. Compare with the plot at the bottom of Figure 3.6.

the identified SSPR residual r3 when Sensor D3 has failed to zero at sample number 234,
i.e., at the same time as portrayed in the bottom graph of Figure 3.6. In that case the
model-based SSPR failed to give a clear indication of the failure. In Figure 3.8 we see

that the identified residual gives a very different failure signature. First, note that the
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amplitude of the identified residual is smaller than the amplitude of the model-based residual
by approximately two orders of magnitude. Furthermore, the amplitude of the identified
residual is small while the sensor is in good condition and large while the sensor is faulty,
the opposite of what we had before. Clearly, this case is much closer to what we would
like to see. To highlight the difference between the model-based and identified relations, we
show the components 73, and 73,4 in Figure 3.9. Here we see that the contributions rs,
and r3, are approximately of the same magnitude. We also see in these figures that the
two components have similar wave forms and thus, when subtracted from each other, will
result in a residual with a small amplitude. Careful comparison between Figures 3.6 and 3.9
further shows that, while the sensor is in working condition, the model-based residual has
more high frequency content than the identified residual. The reason for this will become

clear when we discuss the different Residual Generator transfer functions in the next section.

With the identified relations we have the luxury of easily increasing the number of lags used
in the parity relations. In Figure 3.10 we show the residual of an identified SSPR. relation
with 20 lags. To make a comparison with a previous failure we have chosen a failure of
Sensor D3 at sample number 234. Comparing Figure 3.10 with Figure 3.8 we see that
increasing the number of lags results in a residual with a smaller amplitude while the sensor
is in good health and a slightly larger residual when the failure is present. Therefore, at the
expense of an increase in the number of computations, we can improve the failure signature

by choosing a higher order model.
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3.4 Transfer functions of model-based and identified Single

Sensor Parity Relations

To explain some effects that we have seen in the preceding sections and further highlight
the differences between the model-based and identified SSPR residuals, we now turn to the

transfer functions of the corresponding residual generators.

In Chapter 2 it was noted that a SSPR Residual Generator is a multi-input single-output.
finite impulse response filter so that the individual transfer functions have no poles (except
for poles at the origin). The zero locations of the model-based and identified Residual
Generators for the transfer function B,(z) are shown in Figure 3.11. We see that the
identified relation has zeros at higher frequencies than the model-based relation. The zeros
of the model-based Residual Generator are simply the poles of the plant (see Section 2.1),
and the poles have been constrained to the first five modes of the mast by our selection of
the model. During the identification process no constraint is placed on the pole locations
and the resulting model thus gives poles that give the best fit over all frequencies. Except
for one complex zero pair, there is little correspondence between the zero locations of the

two transfer functions.

Thé transfer functions of the model-based and identified Residual Generators are compared
in Figure 3.12. We first note that the model-based transfer function from y, to 72 has a
small gain at low frequencies and a high gain at high frequencies. This high gain at high
frequencies explains the extreme sensitivity that the residual showed to a noisy sensor (see
Figure 3.7). Although it was not shown there, the corresponding identified residual was less
sensitive to noise. The high gain is also responéible for the good transient that we have seen
in Figure 3.4. In that figure we see that there was an abrupt change in the measurement

at the time of failure. For the example shown at the bottom of Figure 3.6, the time of
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Figure 3.11: Left: Zero locations of the model-based Residual Generator transfer
function y; to r5. Right: Zero locations of the identified Residual Generator
transfer function y; to r3. The solid line circles have radius 1. Note that the
model-based Residual Generator has two closely spaced zeros at approximately
45 degrees.

failure was chosen so that the output y; was close to a zero crossing point so that there
was no abrupt change in the signal. The high gain at high frequencies also explains why
the components r; , and 72,4 have such bdiﬁ“erent amplitudes — noise in the measurement is
amplified considerably so that the contribution of tha:c component is much larger than the
contribution of uy, ..., un,. The model-based transfer functions A21(2), ..., Az3(2) also
have smaller gains at low frequencies than the identified relations. The identified relation

clearly puts more emphasis at low frequencies and less at high frequencies.

The spectra of the model-based and identified residuals are shown in Figure 3.13. We see
that the model-based residual has very little frequency content at low frequencies and much

greater frequency content at high frequencies. Note that the difference of the minimum
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Figure 3.12: Transfer functions of the model-based (solid line) and identified

(dashed line) SSPR Residual Generators. Top left: yo to 9, top right: u; to

T, bottom left: uy to rg, bottom right: uz to 7.
at low frequencies and the maximum at high frequencies is almost 180 dB! Clearly, the
model-based Residual Generator does a very good job at frequencies below 7Hz. However,
because we have a reduced order model with an excellent match at low frequencies, there is
a signiﬁcént mismatch at high frequencies and this prevents the model-based relations from
obtaining good performance. The large high frequency content was pointed to earlier when
we discussed the differences between model-based and identified relations in Figures 3.5, 3.6

and 3.9. Note further that the model-based spectrum clearly shows a peak at approximately

14.4Hz that corresponds to the local modes which are not included in the state-space model.
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Figure 3.13: Spectra of the model-based and identified residuals.

The spectra of the identified residuals exhibit an almost flat response over all frequencies.
The limitation of the 10 lag relation clearly shows up as a peak at approximately 0.9 Hz,
the first bending mode, as well as a peak at approximately 6 Hz, the second bending mode.
Increasing the number of lags to 20 clearly shows an improved match at the first bending

mode and a spectrum with a slightly smaller magnitude over most of the frequency band.

In the next section we inveétigate the effect of the sampling period on the performance of

the Re_sidual Generators.



3.5 Increased Sampling Period

It was found that increasing the sampling period had a significant effect on the identified
SSPR residuals. An increase in the sampling period gave improvement on the model-based
SSPRs. Using the same data set as before the sampling period was increased to 30 ms,

i.e., 2T. Figure 3.14 shows the identified residual r3 when Sensor D3 has failed to zero at
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Figure 3.14: ldentified SSPR r3, 10 lags, sampling period 27,. Sensor D3 has
failed to zero at sample number 117.

sample number 117; this corresponds to the same time as we had in Figures 3.9 and 3.10.
Here we clearly see that doubling the sampling period leads to a major improvement in the
failure signature. The same failure is shown in Figure 3.15 where we have used a sampling

period of 30 ms and a parity relation with 20 lags — an excellent failure signature.
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Figure 3.15: Identified SSPR r3, 20 lags, sampling period 2T.

It was hoped that the transfer functions of the corresponding Residual Generators would
hint at why the increased sampling period leads to so much improvement in the residual but
an analysis turned out to be fruitless. One possible reason is that at 10 lags only a small
portion of one period of lowest frequency of interest, i.e., the first bending mode at 0.9 Hz,
counts in the computation of a relation — with noise:contaminating the measurement, it
is difficult to capture the underlying low frequency component. Increasing the sampling
period results in samples taken further apart so that, using the same number of lags, a
greater portion of one period is covered. Another possible reason is that, at 275, a smaller
frequency band needs to be matched by the ARX model leaving more freedom to give a
better model at low frequencies. The transfer functions of 20 lag, 175 and 20 lag, 27T,
identified SSPR Residual Generators are compared in Figure 3.16. We see that the 27T}

transfer functions tend to have more peaks and dips at low frequencies compared to the 17,
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Figure 3.16: Identified SSPR Residual Generator transfer functions, 20 lags, 17,
(solid line) and 2T, (dashed line). The transfer functions are as follows: upper
left: y; to ra, upper right: uy to o, lower left: uy to 7o, lower right: us to

counterparts, indicating that more modes are being included at the lower frequencies.

3.6 Double Sensor Parity Relations

In this section we present several failures where DSPRs are used to detect the failure.
As before, we will compare model-based relations with identified relations and discuss the
effect of increased number of lags and increased sampling period on the performance of the

Residual Generators.
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Figure 3.17 shows the model-based residuals 715 and 713 where Sensor D1 has failed to zero
at sample number 238. A brief transient is visible at the time of failure. Note further that
the residual remains small after the transient is gone. Like the model-based SSPRs, the
model-based DSPRs sometimes fail to indicate the failﬁre of a sensor. An example is shown
in Figure 3.18 where Sensor D1 has failed to zero at sample number 250. In this example
the residuals give no indication of the failures at all. Careful inspection of the plot at the
bottom of the figure shows that the first part of the residual up to sample number 250 has
a high frequency content while the part from sample number 250 to the end shows some
underlying low frequencies. This is to be expected as the DSPR Residual Generator has as
inputs the plant inputs uy, uz, uz as well as the two measurements y; and ys. Therefore,
even when Sensor D1 fails to zero, the dynamics of the mast are still being fed to the
Residual Generator through Sensor D3. We thus would expect that this signal, which has

low frequencies in it, should appear at the output of the Residual Generator.

The detection of the failure of Sensor D2 at sample number 150 by an identified DSPR
is shown in Figure 3.19. Both the residuals 712 and r3; give a clear indication of the
failure. The number of lags used was 10. Although this is a different sensor and the parity
relations have more lags than the model-based relation, a comparison will still be made. We
note that the identified residuals are significantly smaller than the model-based residuals.
Furthermore, the difference in frequency content of the residual before and after the failure
is large. This invites signal processing to improve the failure signature. It was noted in
Section 2.2 that it is possible to construct a dual pafity relation for a specific pair of sensors.
The dual residuals r¢; and r93 are shown in Figure 3.20. Clearly, there is a marked difference
in the amplitudes of the residuals when compared to the ones in Figure 3.19. When this
difference was first noted it was believed that this is because Sensor D2 appears as the first

sensor in the relation but this big difference did not manifest itself in the other relations
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Figure 3.17: Model-based DSPR residuals 715 and 7y3. Sensor D1 has failed to

zero at sample number 238,
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Figure 3.18: Model-based DSPR residuals 715 and ry3. Sensor D1 has failed to
zero at sample number 250.
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and their dual forms.

Generalized parity relations do not require the specification of the failure mode. The de-
tection of a different type of failure by identified relations is shown in Figure 3.21. Here a
gain reduction of 50% in the output of Sensor D3 was simulated from sample number 180

to 500. Both residuals clearly indicate this failure.

Increasing the number of lags in the relations again resulted in improved failure signatures.
Figure 3.22 shows the residuals where we have used 20 lags in the DSPRs. This is the same
failure that we have seen in Figure 3.20. A comparison of the two figures shows that there is
an advantage in increasing the number of lags. The amplitudes of the residuals are smaller

when the sensors are in healthy condition and larger once a sensor fails.

Increasing the sampling period again resulted in a significant improvement of the failure
signatures. A model-based DSPR at 2T is shown in Figure 3.23. Comparing this figure
with Figure 3.18 we notice a significant difference between the residuals. Considering that
we are using the same continuous-time state-space model, but now using a longer sampling
period, it is clear that the éamp]ing period has a significant effect on the performance of
a parity relation. An example of a 20 lag identified DSPR with a 2T, sampling period is

shown in Figure 3.24.
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3.7 Summary

In this chapter we have looked at the detection of displacement sensor failures using single
and double sensor parity relations. A cdmparison was made between a set of relations
obtained from a state-space model of the Mini-Mast and a set of relations that was obtained
by identifying the coefficients of the parity relations directly from a set of input-output
data. The state-space model included the first five modes of the mast. The model-based
relations failed to indicate all the failures and were very sensitive to noise. The sensitivity
to noise is a result of the very large gains at high frequencies of the corresponding Residual
Generators. The spectra of the model-based residuals indicate that the state-space model
gives an excellent fit at frequencies below 7Hz at the expense of a poor fit at high frequencies.
Reduced order low frequency models are often used in control system design but the results
of this chapter show that they are not suitable to design Residual Generators for use in

failure detection.

The identified residuals always gave a clear indication of the failure. An analysis of the
Residual Generator transfer functions shows that the identified relations put more emphasis
at low frequencies and less at the high frequencies. The flat spectra of the residuals suggests

that it is important that the model fit the plant well even at high frequencies.

By identifying the parity coefficients directly from input-output data we had the freedom
of choosing the model order. In all the experiments an increase in the number of lags
(i.e. increasing the order of the model) led to an improvement of the failure signature. An
increase in the model order usually resulted in a smaller residual while the sensors were
in good health as well as an increase in the magnitude of the residual when a failure was

present.
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To improve the performance of the Residual Generator in the case of sensor-off failures,
double sensors parity relations can be used. In all the experiments and different failure
modes considered, the double sensor parity relations performed better than their single
sensor parity relation counterparts. The main reason for the improvement is the inclusion
of an extra measurement that feeds dynamics of the plant to the Residual Generator even

when the other sensor fails to zero.

Increasing the sampling period resulted in a significant improvement of the failure signa-
tures. This is probably because, with a short sampling period, only a small portion of one
period of a low frequency is covered by a relation with the resulting loss of the important low
frequency information. Furthermore, the same model order must match a smaller frequency

band, giving a better fit.
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Chapter 4

Accelerometer and Gyro Failure

Detection

4.1 Introduction

In this chapter we discuss the sensor failure detection experiments conducted on some
accelerometers and gyros of the Mini-Mast. These experiments are similar in nature to
the experiments discussed in the previous chapter. Because we are using different types
of sensors, we will get the interesting case where sensors of mixed type are used to form
a double sensor parity relation. Three sensors are considered: two accelerometers that
measure linear acceleration in the global X and Y directions, and the Z-axis gyro. All the
sensors are at the tip of the mast. No state-space model was available for this set of sensors

so we present only identified relations.

Before we discuss the failure detection experiments we first look at the spectra of the mea-
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surements. In Figure 4.1 we show the spectrum of the Y-axis acceleration. The torque wheel
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Figure 4.1: Spectrum of the Y-axis acceleration. The torque wheel motors were

driven by discrete-time white noise that was passed through lowpass filters with
20 Hz bandwidth.

motors were driven by 20Hz bandlimited random signals. We see that the first torsional
mode is the dominant mode, with the first and second bending modes approximately 80 and
10 dB down respectively. We also see the effect of the local modes at 15Hz and 19Hz. The
peaks in the spectrum at approximately 9Hz and 23 Hz are probably the result of aliasing:
the peak at 23Hz is caused by the fourth bending mode at 43.4Hz and the peak at 9Hz
comes from a mode at 74.8 Hz. Similarly, there are modes at 91.7Hz and 93.2Hz that alias
to 25 Hz and 26.5 Hz respectively. In this experiment the sensor signals were filtered by third

order analog lowpass filters before they were sampled, but the filtering was not enough to
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prevent aliasing. The bandwidth of the analog filters was 20 Hz.

The solid line in Figure 4.2 shows the spectrum of the same measurement, but this time
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Figure 4.2: Spectrum of the Y-axis acceleration. The torque wheel motors were
driven by discrete-time random signals that were held constant for 4 sampling
periods. The dashed line shows the spectrum when the sampling period is 2.

the torque wheel motors were driven by random signals that were held constant for 4
sampling periods. The output was sampled at 17 intervals, which corresponds to a sampling
frequency of 66.67 Hz. Again we see the peaks at approximately 9 and 23Hz. The dashed
line in this figure shows the spectrum when we sample the output of the Y-axis accelerometer
at 2T, (33.33Hz). Here we clearly see how the local mode at 19 Hz aliases to approximately
14 Hz. Although it was believed that the sensor outputs were filtered by 20 Hz analog filters

before they were sampled, it was found after the experiments were conducted that the analog

R T T o



filters were inadvertently set to have 100 Hz bandwidths, which is way abéve the sampling
frequency. Although most of the aliased components are 30dB or more down, it was found
that the ambiguity caused by their presence degraded the performance of the Residual
Generators. So all measurements were digitally filtered with a fifth order elliptical filter
with 0.5dB passband ripple and stopband attenuation of 40dB; the equivalent continuous-
time cutoff frequency was 7Hz. The passband of this filter was chosen to be wide enough to
pass the first five modes of the Mini-Mast and still give acceptable attenuation of the 9Hz

aliased component. The spectrum of the Z-axis gyvro signal is shown in Figure 4.3 where

-100

dB

-120

-140

-160

1805 5 10 15 20 25 30 35
Frequency [Hz]
Figure 4.3: Spectrum of the Z-axis gyro signal. The torque wheel motors were

driven by discrete-time random signals that were held constant for 4 sampling
periods.

we see that the first torsional mode is by far the dominant mode.
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4.2 Single Sensor Parity Relations

For this set of experiments the torque wheel motors were driven by random signals that
were held constant for 47, while the sensor outputs were sampled at 17, intervals. A

block diagram of the experimental setup is shown in Figure 4.4. In the block diagram we

MiniMast Anti-alias Yt
Filter

. r
Residual Postfilter -

Generator

Figure 4.4: Experimental setup.

also show an additional filter at the output of the residual generator. In some experiments
we will show how additional filtering of the residuals can be used to improve the failure
signature. This filter will be called the postfilter and we will indicate when it is used. A
sixth order elliptical filter with 10 Hz bandwidth, 0.5dB passl;and ripple and 60dB stopband

attenuation will be used in all the cases.

Figure 4.5 shows the failure of the Y-axis accelerometer at sample number 245 and Figure 4.6
shows a failure of the Z-axis gyro at sample number 255. In both cases identified SSPRs
with 20 lags were used. Although both residuals indicate the corresponding failures, they
contain high frequency noise and clearly will not give reliable indications of failures. The
same residuals of Figures 4.5 and 4.6 are shown in Figures 4.7 and 4.8.; but this time after
the residuals were filtered by the postfilter. We see that lowpass filtering the residuals

definitely leads to improved failure signatures. Figures 4.9 and 4.10 show the same sensors
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with the same type of failures at approximately the same points in time, but this time
using a sampling period of 2T;. These two figures must be compared with Figures 4.5 and
4.6 respectively. First we note that the residuals have respectively 5 and 7.5 times larger
amplitudes. Furthermore, the ratios of the amplitudes in the failed and unfailed states
have increased considerably. The postfilter has not been applied to these residﬁals: the
improvement comes only from the increased sampling period. It was found that filtering
these residuals with the postfilter resulted in little improvement of the failure signature. In

the next section we look at double sensor parity relations.
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4.3 Double Sensor Parity Relations

Although the single sensor parity relations at 2T, gave good performance there were failures
where the indications were only marginal. The next step is to look at double sensor parity
relations and hope that they will perform better. Figure 4.11 shows a failure of the X-axis
accelerometer at sample number 236 and Figure 4.12 shows a failure of the Z-axis gyro at
sample number 286. The number of lags used was (11,10), i.e., the parity relations had
the form r;; as shown in Equation (2.37), and we use the notation (3,7) to indicate the
number of lags used. In both cases the unfiltered DSPR residuals are shown. We now
have the interesting case where sensors of mixed type are used to comstruct the parity
relations. The residual at the top of Figure 4.11 used the X-axis and Y-axis accelerometer
measurements to compute the residual, while the residual shown at the bottom of this
figure was computed from the X-axis accelerometer and Z-axis gyro measurements. A
comparison of these residuals with their 20 lag, 17T} single sensor counterparts (Figures 4.5
and 4.6) shows that we get a significant improvement by using the double sensor parity
relations. It is again possible to clean up the signals with the postfilter but we will not

show the results here.

An increase in the sampling period again leads to a significant improvement in the fail-
ure signatures as shown in Figures 4.13 and 4.14. Note that the output of the Residual
Generators are shown in these figures: no extra filtering was applied to the residuals. In
Figure 4.15 we have simulated the failure of an accelerometer that gives the correct output
when the acceleration is positive and zero when the acceleration is negative. This type of
failure can occur when a sensor is powered by a dual rail power supply and the negative

supply falls away. The residuals clearly indicate this type of failure.

Despite the good results that we have shown so far, the Generalized Parity Relations are
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still sensitive to certain parameter variations. In Figure 4.16 we show a failure of the Z-axis
gyro at sample number 250. The torque wheel motors were driven by lowpass filtered white
noise. The coefficients of the single sensor parity relation were identified on a different input-
output data set, but with the motors driven by a similar type of input signal. Figure 4.17
shows a failure of the same sensor at the same time, using the same data set. However,
the parity relation coefficients were identified on an input-output data set where the motors
Weré driven by random signals that were held constant for 47,. We see that the residual
gives no indication of the failure. Repeating this test on the accelerometers gave the same
result, i.e., no indication of failures. One possible explanation is that the torque wheel
motors have a significant amount of friction so that the amplitudes of the input signals
will determine how much the wheels are actually excited. The amplitudes of the lowpass
filtered input signals were approximately 7 times smaller than the amplitudes of the input
signals that were held constant. It is therefore difficult to conclude whether the difference .
in performance is due to the different type of input signals that were used or due to the
different magnitudes of the input signals. Either case, it is a disturbing fact that the parity

relations show this sensitivity to the different input signals.
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4.4 Summary

In this chapter we have discussed the detection of accelerometer and gyro failures. It
was found that the wider bandwidth of the measured signals can lead to aliasing that in
turn degrades the performance of the residual generators. With proper anti-alias filters in
place, the double sensor parity relations give good failure signatures. The sampling period
again proved to be a very important parameter in the design of the Residual Generator.
Despite the good performance, the parity relations are still very sensitive to the type and/or

magnitude of the signals that are used to excite the system.

We also showed examples of parity relations that were constructed using different types of
sensors. In all the cases considered the double sensor parity relations gave clear indications
of all the different failure modes. It must be noted that this improved performance comes

with the burden of an increased computational load.

It must be noted that we have shown results using parity relations with 20 lags throughout
this chapter. It was found that, because this set of sensors have higher bandwidths than
the displacement sensors, lower order models simply did not give clear indications of the

failures.
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Chapter 5

A ctuator Failure Detection

In this chapter we discuss the detection of actuator failures on the Mini-Mast. For the
experiments conducted here, the torque wheel motors were driven by lowpass filtered ran-
dom signals. The bandwidths of these filters were 10Hz, and the baseline sampling period
of 0.015 seconds, i.e., 1Tswas used. The measurements were filtered by 20Hz third order
analog filters before they were sampled and digitized. We will present data only on results
where the Bay 18 displacement sensors were used to obtain measurements, as the results

obtained by using the accelerometers and gyro were similar in nature.

A failure was simulated while the experiment was conducted by disconnecting the com-
manded signal to a torque wheel motor. The model-based single actuator parity relation
for this failure is shown in Figure 5.1. The actual time of failure is not known but should
be approximately at sample number 500. In the figure we see that there is no indication
of the failure at all. The residual of the same failure is shown in Figure 5.2 but this time
an identified parity relation with 20 lags was used to detect the failure. Even though this

residual is significantly smaller than the model-based residual, no indication of the failure
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is visible.

The above experiment was repeated by using double actuator parity relations, and both 17}
and 2T, sampling periods were used without any visible improvement. Single and double
actuator paﬁty relations were also identified using the X and Y-axes accelerometers and

Z-axis gyro but they, too, were unable to detect the failure.

To gain more insight into the behavior of the actuator parity relations a computer simulation
was conducted. Bandlimited random input signals were generated and a fajlure of the Y-
torque wheel motor was simulated in the input data by zeroing the actual signal going to
the plant. The Y-torque wheel motor was zeroed between samples number 213 andr 284.
The corresponding outputs were generated using the Mini-Mast state-space model given in

Appendix B. The SAPR residual 7, is shown if Figure 5.3.

This simulation was repeated, but this time noise was added to the measurements before

they were used by the Residual Generator. A block diagram of this is shown below.

noise

u Mini-Mast |-Y

O—

Residual hi

Generator

Actuator failure simulation.

The standard deviation of the noise that was added to the measurement was 1% of the
standard deviation of the measurement. The SAPR residual for this simulation is shown in

Figure 5.4. A comparison of the magnitudes of the residuals in Figures 5.3 and 5.4 shows
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Sample number

Figure 5.3: SAPR residual for Y-torque wheel failure. In this simulation the
torque wheel was in a failed state between samples 213 and 284.

that the single actuator parity relations are extremely sensitive to noisy measurements. This
sensitivity is also clearly visible when we look at the contributions of the measurements, Ty»
and control inputs, r,, to the residual r, as shown in Figure 5.5. In these figures we see that
the noise in the measurement is amplified so much that it is orders of magnitude larger than
the contribution of the control signal r,. The extreme sensitivity to noise is easily explained
when we look at the transfer functions of the corresponding Residual Generator, shown in
Figure 5.6. In this figure we see that the transfer functions from the measurements y to
the residual r, have very large gains over a large portion of the frequency band, especially
at high frequencies, and therefore the smallest amount of noise in the measurements ‘will
be amplified and bury the residual deep in it. The figure also shows that the gain of the

transfer function from the control signal u; to the residual r; is small compared to the gains

91



20 T I T T

1

_20 i - I
0 100 200 300 400 500

Sample number

Figure 5.4: SAPR residual for Y-torque wheel failure with noisy measurements.
The standard deviation of the added noise is 1% of the standard deviation of
the measurement. The torque wheel was in a failed state between samples 213

and 284.

of the other transfer functions. Simulations with double actuator parity relations showed

similar sensitivity to noise and gave no improvement.
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Figure 5.6: SAPR Residual Generator transfer functions for r;. Bj is the transfer
function from u; to r, and Aoy, Ao, A the transfer functions from Y1y Y2, Y3

to ro.
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To summarize, detecting actuator failures on the Mini-Mast using Generalized Parity Re-
lations was without any success. The main reasoh for the poor performance of the parity
relations is the extreme sensitivity to noise, a result of the very high gains on the transfer
functions from the measurements to the residual. Also, the small contribution of the control
signal to the residual makes its absence very hard to detect. This sensitivity is inherent in

the formulation of actuator parity relations.

95



Chapter 6

Generalized Parity Relation

Experiments Using the ACES

Facility

6.1 Introduction

The ACES (Active Control Evaluation for Spacecraft) facility is at the Marshall Space Flight
Center in HuﬂtsViHe, Alabama. It is a symmetrical beam, 13 m long, with a triangular cross
sectio.n. Three longerons extend the full length of the mast and form the corners of the
beam. There are 9‘1 flexible batons in compression along the length of the boom connected
by diagonal members in tension. The mast has a twist of 260 degrees from base to tip. An
antenna is at the tip of the mast and a pointing gimbal at the base. A laser beam, fixed in
the lab, is reflected by two mirrors and its X —Y location is detected by an optical detector

mounted on the antenna. One mirror is mounted on the antenna and the other one on the

96



pointing. gimbal system or image motion compensator (IMC).

Q)

1 Base Excitation Table

2 Three-axes Base Accelerometers :

3 Augmented Advanced Gimbal System © [@ ‘;;'
4  Three-axes Base Rate Gyros ® %}
5 Three-axes Tip Rate Gyros X
6 Three-axes Tip Accelerometers ® X
7  Optical Detector ;'52
8 Reflectors §>‘
9 Laser Light Path 4; Astromast
10 Two Gimbal System %5‘
11 LMED System d

INEINEN
N NZY

3 Meter Anlenna

Figure 6.1: Schematic diagram of the ACES mast.

The mast is equipped with a variety of sensors and actuators and only the ones that are
applicable to this work will be mentioned. Three-axes rate gyros and accelerometers are

mounted at both the base and the tip of the mast. Two linear momentum exchange devices
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(LMED) are located 6.4 and 11.4 m from the base respectively. The LMEDs consist of a
proof mass actuator and collocated accelerometers. A high precision, three-axes, gimbal

system with torque motors is mounted to the base of the system.

6.2 Processing the residuals

In the following section and the next chapter we discuss various failure detection experiments
that require the comparison of the residual to a threshold. During the course of the work
it was found that the failure could often be seen in the residual by the human eye but no
significant increase in the magnitude was present so that it could be accurately detected
by a threshold detector. Simple lowpass filtering turned out to be inadequate to extract
the failure signature from the noise and it was found that simple nonlinear processing
greatly improved the failure signaturé. A block diagram of the processing system is shown

in Figure 6.2. The residual is first filtered with a lowpass filter with cut-off frequency of

) : Movin

Residual ' Lowpass i s =r2 > Avera ge £
Generator Filter —f ; &
Filter

Figure 6.2: Block diagram of post processing filter.

approximately 3 Hz. This cut-off frequency is based on the bandwidth of the system and
should be large enough to include the dominant modes. In a few cases, notably ACES
experiments, it was necessary to use a bandpass filter to remove some sensor biases. The

output of this lowpass filter is then squared and applied to a second lowpass filter with
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very low cut-off frequency, typically less than 0.05 Hz. This low fréquency is necessary
to ensure that the magnitude of the failure signature stays large during periods of small
measurements. Butterworth and Bessel filters were initially used for this low bandwidth
filter but numerical problems ruled them out. A simple moving average filter was found
to work best and was used for all the experiments. The number of lags of this filter was

typically 200 or more.

6.3 ACES Failure Experiments

The ACES failure detection experiments were conducted similar to the Mini-Mast experi-
ments. In order not to excite too many high frequency modes bandlimited inputs were used
on all the experiments. These input signals were generated by filtering random sequences
with bandpass filters. Like the Mini-Mast, it was found that a longer sampling period gives
better results. Because this was anticipated, the experiments were designed so that it would
be easy to use various sampling periods by holding the input signal constant for more than
one sampling period. Experiments were repeated by keeping the input signal constant for
1, 2, 4, and 8 sampling periods. The baseline sampling period for ACES is T, = 20 ms. It
was found that increasing the sampling period more than 475 lead to little improvement
and the following results were all done at 475. The bandwidths of the bandpass filters were
chosen so that the bandwidths of the resulting signals, taking the longer sampling period

into account, were 1 Hz.

Initial results on ACES were very poor and it was hard to detect sensor failures using low
order models. Only when models of order 60 and higher were used did failures show up in
the residuals. Though failures were visible in the residuals by the eye, the residuals were not

good enough to be used as reliable indicators of the failures. As explained in the previous
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section, nonlinear filtering greatly improved the situation and was used in all the ACES

experiments. The order of the parity relations presented here was 60.

All the parity relations used in these experiments were identified on one set of input-output
data and then applied to other sets to detect component failures. Two different methods
were used to identify the coefficients of the parity relations. The one approach was to use
the standard least squares technique as outlined in Section 3.3. See also Section 2.1. For
the second approach we used the ARX procedure in Matlab’s System Identification Toolbox
[9]. This procedure performs robust identification by weighing small errors quadratically
and large errors linearly. The value at which the cost changes from quadratic to linear is
user definable and the default value was used. Detail about this method can be found in [7]

and [9]. Unless noted otherwise all parity relations were identified using the robust method.

For this facility there are many sensors and actuators to choose from and only a represen-
tative sample is showed here. The first SSPR was designed to detect failure of one of the
gyros at the base of the mast. Recall that the mast is hanging upside down so the base is
at the top and the tip at the bottom. The three base gimbal torque motors were used to
excite the mast. A failure of the gyro was simulated by zeroing the recorded output from
t = 60 seconds until the end of the experiment and the residual is shown in Figure 6.3. The
coeflicients for this residual were identified using the least squares technique. A sudden in-
crease in the residual magnitude shows the failure and even after the transient has decayed

a large residual still shows the presence of the failure.

SSPRs were also identified for the LMED accelerometers. A typical failure of one of the
accelerometers is shown in Figure 6.4. The failure was introduced after 48 seconds. A clear

indication of the failure is given by the increase in magnitude of the residual.

Due to the initial difficulties experienced in detecting sensor failures, single sensor parity
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Figure 6.3: SSPR residual for base gyro. The failure was introduced at ¢t = 60
seconds.

x10-¢

0 i ; : ;
0 10 20 30 40 50 60 70 80

Time [seconds]

Figure 6.4: SSPR residual for LMED accelerometer. The failure was introduced
at ¢ = 48 seconds.
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relations were abandoned in favor of double sensor parity relations with the hope that the
additional measurement would give better results. With the nonlinear processing the SSPRs
were found to compare favorably with the DSPRs and thus may be a viable solution for

most sensors instead of the (numerically) more complex double sensor relations.

A double sensor parity relation was designed using a base and tip gyro with the base
torquers as actuators. The tip gyro was failed to zero after 50 seconds; the residual is
shown in Figure 6.5 where the increase in the magnitude of the residual clearly shows the
failure. Failing the base gyro at ¢ = 40 seconds also results in a clear indication of the failure
as shown in Figure 6.6. Note that a set of three double sensor parity relations constructed

from three different sensors is needed to determine which one of the sensors actually failed.

Combining different types of sensors in a DSPR is always interesting so a gyro at the
base was combined with a tip accelerometer. A failure of the base gyro was introduced at
t = 60 seconds and the residual is shown in Figure 6.7. The scale of the plot was kept the
same as in Figure 6.6. Though the increase in magnitude is smaller than before the failure
is still visible. Failing the accelerometer at t = 45 seconds is also detected as shown in
Figure 6.8. Once the transient has decayed the magnitude of the residual is about the same
as it was before the failure, which is not desirable. Still, the transient lasted long enough

to be detected.

For the next DSPR we combined a tip gyro with an LMED accelerometer and failed the
tip gyro after 50 seconds. The failure signature shown in Figure 6.9. The failure signature
again gives a good initial indication of the failure yet it fails to keep the residual large
till the end. A failure of the LMED accelerometer could not be detected. Analysis of the
contributions of the individual sensors to the residual showed that the contribution from

the accelerometer was more than 4 times smaller than that of the gyro and was effectively
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Figure 6.5: DSPR residual for (base gyro, tip gyro) pair. The tip gyro failure
was introduced at ¢t = 50 seconds.

x10-3

60

Time [seconds]

Figure 6.6: DSPR residual for (base gyro, tip gyro) pair. The base gyro failed
at ¢ = 40 seconds.
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Figure 6.7: DSPR residual for (base gyro, tip accelerometer) pair. The base
gyro failed at ¢ = 60 seconds.

x10-6
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Figure 6.8: DSPR residual for (base gyro, tip accelerometer) pair. The tip

accelerometer failed at ¢t = 40 seconds.
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Figure 6.9: DSPR residual for (tip gyro, LMED accelerometer) pair. The tip
gyro failed at after 50 seconds.

masked by the noise. The transient seen in Figure 6.9 resulted from the transient that
occurred when the gyro was failed. Once this is zero the contribution from the other sensor
is so small that there is no sustained indication of the gyro failure. This also explains why
the gyro failure in Figure 6.7 resulted in a transient with no sustained indication of the

failure.

It was mentioned that different identification procedures were used to identify the coef-
ficients of the parity relations. We will now show how the choice of method affects the
quality of the residual. A DSPR was identified for the base gyro and tip accelerometer pair
that was showed in Figure 6.8. This time the standard least squares method was used and

the resulting failure is showed in Figure 6.10 where we see that the failure is not detected
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Figure 6.10: DSPR residual for (base gyro, tip accelerometer) pair. The ac-
celerometer failed at after 40 seconds.

by this DSPR. This behavior was not general and in same cases DSPR identified with the

standard least squares method resulted in better residuals!

Similar results were obtained when the LMEDs were used to excite the mast instead of the
base torquers. Experiments were also conducted where only the IMCs were used with the
hope that the direct link between the IMCs and detector will give good results. The large
quantization error of the detector made this the worst performer of the sensor-actuator
pairs tested. Combining the detector with any set of actuators always gave bad results and

detector failures could not be detected.

Both single and double actuator parity relations were identified from input-output data

but actuator failures could not be detected. In all the cases the individual contributions
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to the residual from the sensors were much larger than the contribution from the actuator.
Typical results are shown in Figure 6.11. An SAPR was constructed for the X —gimbal
torquer using two tip gyros as sensors. The individual contributions are shown Figure 6.11.

In this experiment the X —gimbal torquer was disconnected between 60 and 100 seconds.

0.02 0.02
= a
> 0
z ° e
-0.02 -0.02
4] 50 100 (4] 50 100
Time [seconds] Time [seconds]
ul->rl ,
0.02F -
z 0 iy
=
-0.02} B
0 50 100

Time [seconds]

Figure 6.11: SAPR individual contributions for X —gimbal torquer using two tip
gyros as sensors. The torquer was disconnected between 60 and 100 seconds.

No indication of this failure is given by these signals. As we showed in Chapter 5 (see for

example Figure 5.6), the poor performance is a result of the extreme sensitivity of SAPR

Residual Generators to noise.
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6.4 Summary

Detecting sensor failures on the ACES facility proved to be difficult compared to the Mini-
‘Mast. The main reason for this is the high order models that are needed to construct
reliable parity relations. When models of order 60 and higher are used it is possible to
detect sensor failures with both single and double sensor parity relations. In all the cases

nonlinear processing of the residuals was needed to give reliable failure signatures.

For some double sensor parity relations the failure of one sensor would result in a transi-
tory indication only with the contribution of the second sensor effectively masked by the
noise. Currently no method exists to determine analytically which sensor pairs will give
“good” residuals. It was also shown that robust identification techniques can identify parity

relations that perform better than ones identified using standard least squares techniques.

Actuator failures proved to be hard to detect for this system and even high order models
did not detect failures. The main reason for this is the extreme sensitivity of actuator parity
relations to noise and the small contribution of the nominal actuator signal to the parity

relation residual.
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Chapter 7

Failure Detection Filters

7.1 Introduction

As stated in Chapter 1 there is a variety of methods available for the detection and identifi-
cation of control system component failures. In previous chapters we looked at generalized
parity relations; in this chapter we discuss a series of failure detection experiments that
were conducted on the Mini-Mast using the failure detection filter (FDF). First, we give a

brief description of failure detection filters.

The FDF is an observer of a linear dynamic system which indicates failures of some of the
components of the system by constraining the signature of the failures to unique directions
in the space of the measurement residuals. It was developed by Beard in 1971 [2]. Shortly
after that Jones [6] gave a geometric interpretation of the failure detection filter and more
recently White and Speyer [16] viewed it as an eigensystem assignment problem. A different

formulation of the failure detection filter was developed by Massoumnia [10]. We will give
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brief descriptions of the Beard and Massoumnia formulations and refer the reader to the

references for more detail.

Consider the continuous-time, linear, time-invariant model given by

#p(t) = Apzp(t) + Byua(t), (7.1)

Cozy(1) (7.2)

y(t)

where z,(t) € R™ is the state vector, u,(t) € R™ is the actual input vector driving the
system, y(t) € R™ is the measurement vector, and A, € R"**"s, B, € R%*™  and
C, € R™*™ are the usual continuous-time state-space matrices. The failure detection

filter is a linear time-invariant system driven by the commanded inputs u. and measured

outputs and is described by
2(t) = Arz(t) + Dy(t) + Bruc(1), - (73)

and the matrices Ay € R™*™ By € R™*" and the detector gain D € R™*™ must
g

be selected to produce the necessary information about the failure. This can be done by

constructing the error signal

e(t) = m5(t) - (1), (7.4)
which is just the difference between the system states and the filter states. Differentiating

this equation and using Equations (7.1)-(7.3) we get
é(t) = (Ap — DCy)ay(t) — Arz(t) + (Bpua(t) - Bruc(t)). (7.5)

If the actual control signal driving the plant is the same as the commanded control signal

we see that by choosing
Ar = A,-DC, (7.6)

B; = B;, (7.7)
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we get the following expression for the error dynamics
é(t) = (Ap — DCp)e(t). (7.8)

We also define the residual

r = Cpe(t). (7.9)

If we choose D so that all the poles of A, — DCy, are in the left half plane then the residual
will go to zero as time goes to infinity, that is, if everything in the system is in good health

the steady-state residual will be zero.

Consider now a failure of the jth actuator modelled by
u,(t) = uc(t) + i;n(t) (7.10)

where 1; is the jth column of the identity matrix and n(t) is an arbitrary unknown function
of time. Substituting Equation (7.10) into Equation (7.5) and using the choices for As and

| B given in Equations (7.6) and (7.7) we get the following expression for the error dynamics
é(t) = (Ap - DCp)e(t) + bjn(t) (7.11)

where b; is the jth column of By,. From this equation we see the error is now driven by the
signal n(t) so that the error, and therefore the residual, is nonzero in general. Beard has
shown that it is possible to find a detector gain D so that the steady-state residual maintains
a fixed direction, determined by C, and b;, in the output space and the eigenvalues of
A, — DC,, can be assigned almost arbitrarily. There are also other important concepts
related to the design of the filter, e.g., it is possible to design a filter that will detect the
failure of more than one actuator in which case it is important to determine whether a
group of failures is output separable and mutually detectable. It is also possible to design a
filter that will detect sensor failures in which case the residual is confined to a plane in the

output space. We will not discuss the detail here and the reader is referred to Beard [2]. The
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important point is that it is possible to detect the presence of a failed component as well
as identify which one actually failed. This can be done, in principle, for arbitrary functions

n(t) — which means arbitrary modes of failure.

A variation of the failure detection filter was proposed by Massoumnia {10]. To illustrate
the method, assume we have a system with two inputs and we would like to design a filter
that is sensitive to a failure of the first actuator but not of the second. The system and

failure are modelled by
@p(t) = Apzp(t) + Bpu(t) + limy(t) + lama(t) (7.12)
y(t) = Cpzp(t) (7.13)
and the filter and residual are given by

()

Asw(t) — By y(t) + Brau(t) - (7.14)
r(t) = Crw(t) — Dgy(t) (7.15)

where A € R"**"s, By, € R"*™, By, € R™*"™, C; € R *", and Dy, € R™*™, and 7,
is the dimension of the residual. In this model the term I;m;(t) represents the component
whose failure we would like to detect with this filter. This term is analogous to the way we
simulated the actuator failure for the Beard filter — when the actuator is fully operational
m1(t) is zero and when a failure is preéent my(t) is an arbitrary function of time. The term
lomy(t) models the failure of the other actuator that should not influence the residual of
this filter. The functions m;(¢) and my(2) are called failure modes. The idea is to find the
filter parameters A¢, Byy, By, Ct, and Dyy so that the residual is nonzero when ma(t) is
nonzero and zero when my(?) is zero, independent of mz(t). Expressed in a different way,
we would like the transfer function from my(t) to r(t) to be zero and mq(t) should be input

observable. The Massoumnia filter is more general than we have presented it here and can
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~ handle systems with any number of inputs. Also, the vectors Iy and I in Equation (7.12)
can in general be matrices L; and L, so that it is possible to design a filter that will detect a
set of failures while not being influenced by another set of failures. The general description

for the system thus is
&p(t) = Apzp(t) + Bpu(t) + Lymy(t) + Lama(t). (7.16)

There is also some freedom in the selection of the filter parameters and Massoumnia has
shown how this can be used to whiten the residuals in the absence of failures. The conditions

under which this problem can be solved can be found in [10].

The failure detection filter formulated by Massoumnia can also be used to detect sensor

failures. Here we model the plant and sensor failures by

Tp(t) = Apzp(t)+ Bpu(t) (7.17)

Cy(t) Coap(t) + Jini(t) + Jang(t) (7.18)

where we would like to detect sensor failures modelled by the term Jy7n4(t) but not those
modelled by the term Jony(t). To design a filter that will detect a failure of the jth sensor
but not respond to failures in any of the other sensors we choose J; = %; where 2; is the
jth column of the identity matrix and J; is all but the jth column of the identity matrix.

We will model the signals n(t) and ny(t) by the following systems

(1) = Agzn,(t) + Bymy(t) (7.19)
ni(t) = Cizn, (1) (7.20)
ng(1) = Ag@n,(t) + Bama(t) (7.21)
na(t) = Chzny(t). (7.22)
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We can now form the augmented system

p(t) / A4, 0 0 zp(t) By
&, (1) = 0 A O x, (1) | ] o [uw(®)+
Ty (1) 1o o 4 Ty (1) 0
( 0 0
B, |mu®)+ ] o |ma) (7.23)
0 B,
L Aa(t) + Bu(t) + Lima(t) + Loma(t) (7.24)
y() = [c¢c, ne Jc, =), (7.25)

which is in the form of Equation (7.16). So we can use the same techniques as before to

solve the sensor failure detection problem.

7.2 Actuator Failure Experiments

In this section we discuss failure detection experiments on the Mini-Mast where the failure
detection filter was used. The Massoumnia filter was used in all the experiments. The
main reason for this choice was the availability of numerically reliable software to compute
the filter parameters. Although the Beard filter has the advantage that the filter can be
designed to detect and isblate more than one failure the algorithm given to compute the

detector gain D in Equation (7.3) gives numerical problems when applied to high order

systems.

A twelfth order state-space model was identified from the recorded input-output data using
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the method of [15]. In all the experiments the baseline sampling frequency was used so that
the sampling period was Ts = 15 ms. Recall that for parity relations this short sampling
period did not give _good results for sensor failures, and no actuator failures could be de-
tected. The sensors used were the three displacement sensors at the btop of the mast, and

the actuators were the three torque wheels mounted at the top of the mast.

Three failure detection filters were designed with whitening of the residuals. As an example

for the first actuator, the system was modelled by
&p(t) = Apzp(t) + Bpu(t) + bima(t) + [ba, bs]ma(2), (7.26)

where By, = [b1, bz, bs] so that the corresponding residual r; will detect failures of the first
actuator only. The second filter was designed to detect failures of the second actuator only

and the system was modelled by
zp(t) = Apzp(t) + Bpu(t) + bamy(t) + [b1, b3]ma(t) (7.27)

with corresponding residual r5. The third actuator is treated in a similar way. The recorded
input-output data was then used as inputs to the failure detection filters. Unless stated

otherwise, the residuals were processed as shown in Figure 7.1 and outlined in Section 6.2.

. Movi
Residual r Lowpass . s= 12 S A oving p
. = e —
Generator Filter f errag
Filter

Figure 7.1: Block diagram of post processing filter.

In Figure 7.2 we show the residual when the X-torque wheel was disconnected at approxi-
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mately 30 seconds and reconnected approximately 30 seconds later. The residual shown was
taken off just after the first lowpass filter and before the nonlinear element, see Figure 6.2.
An increase in the magnitude of the residual clearly shows the failure of the actuator. The
residuals for the Y- and Ztorque wheels were not affected by this failure. Figure 7.3 shows
the residual at the output of the moving average filter and it is clear from the large mag-
nitude of this signal that we can detect the failure with a threshold detector. The residual
for a failure of the Y-torque wheel is shown in Figure 7.4 where the residual was taken at
the output of the moving average filter; the increase in the magnitude clearly shows the
malfunctioning of the actuator. Again, the other residuals were not affected by the failure.
The Ztorque wheel was also disconnected in another experiment and we show the resid--
ual, taken directly from the output of the FDF, in Figure 7.5 where again we have a good
indication of the failure. Note that no additional filtering or processing was performed on
this residual and lowpass filtering would be enough to give an excellent indication of this

failure.

Because these actuator failures were not simulated by corrupting the recorded input-output
data they are significant indicators that actuator failures can be detected for large flexible

structures.

In Chapter 5 we mentioned that actuator parity relations fared poorly on the Mini-Mast.
Since those experiments were performed we started using the post processing filter that
greatly improved the ability to extract the failure signature from the noise. To make a fair
comparison between the FDF and SAPR, a 12-lag SAPR has been identified and applied
to the same input-output data; the residual was processed in the same way as we did for
the FDF. Figure 7.6 shows the resulting failure signature — this figure should be compared
with Figure 7.4. The SAPR simply fails to give any indication of the failure. One reason

for the big difference in performance of the two methods is found by comparing the transfer
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Figure 7.4: FDF residual ry, for Y-torque wheel failure. The failure existed
approximately between ¢ = 30 and ¢t = 60 seconds.
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Figure 7.5: FDF residual r3 for Z-torque wheel failure. The failure existed
approximately between ¢ = 30 and ¢t = 60 seconds.
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Figure 7.6: SAPR residual r,; for Y-torque wheel failure. The failure existed
approximately between ¢t = 30 and t = 60 seconds.

functions of the two residual generators. Figures 7.7 and 7.8 show the transfer functions
from the measurements y; — y3 and input uy to the residual 7o of the SAPR and FDF
residual generators respectively. From the first of these figures we see the gains on the
measurements of the SAPR residual generator increase with increasing frequency and thus
will amplify high frequency noises that are present in the measurements. The corresponding
ga.ins‘ of the FDF increase only slightly over the same frequency range and stay more or
less constant at high frequencies. In Figure 7.8 we also show the transfer function from the
failure mode m;(t) to the residual r5(¢) and see that the FDF puts a little more emphasis
on frequencies at 0.9 Hz, which corresponds to the first bending mode. In the next section

we present the results on sensor failures using the FDF.
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Figure 7.7: Residual generator transfer functions for Y-torque wheel SAPR.
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Figure 7.8: Residual generator transfer functions for Y-torque wheel FDF.
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7.3 Sensor Failure Experiments

Three FDF's were designed to detect failures of the three displacement sensors located at the
tip of the Mini-Mast. Sensor failures were simulated in the recorded input-output data by
corrupting the measurements. In all the experiments presented in this section the baseline
sampling period of 15 ms was used and the sensors were failed to zero at t=15 seconds.

Figure 7.9 shows the residual directly at the output of the detection filter, i.e., with no

x10-4

rt
=}

0 5 10 15 20 25 30

Time [scconds]

Figure 7.9: FDF residual r, for Sensor D1 failure.

additional processing, when Sensor D1 has failed. The failure mode m,(t) was modelled by
a first order system with a pole at s = —275 rad/s. The processed residual also gave a clear
indication of the failure and is not shown. None of the other residuals were affected by the
failure of this sensor. Failures sirﬁulated for the other sensors also showed up clearly in the

unprocessed residual and the results are not shown.
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A second set of detection filters were designed to detect sensor failures but this time the
dynamics of the failure modes were each modelled by second order systems with natural
frequencies of w, = 4.4 Hz and damping coefficients of { = 0.2. The natural frequency, which
was chosen to be approximately 10% faster than the frequency of the first torsional mode,
was selected based on the strong dominance of this frequency in all the measurements. The

resulting residual for a failure of Sensor D1 is shown in Figure 7.10. When we compare this

x10-9

rl

0 5 10 15 20 25 30

Time [seconds]

Figure 7.10: FDF residual r; for Sensor D1 failure. A second order model was

used for the failure modes.

figure with Figure 7.9 we see that the slightly more complex model used for the dynamics
!
of the failure mode resulted in a residual that gives a better indication of the failure. Note

that no additional processing was done: this is the residual as computed by the FDF.

Motivated by the improvement in results obtained by modelling the dynamics of the failure

mode with a second order system, the same idea was applied to the actuator failure detection
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filter. That is, the failure mode was explicitly modelled by augmenting fhe model of the
plant with the dynamics of the failure mode. Using the same values for the natural frequency
and damping coefficient we repeated some of the experiments; the residual corresponding
to a failure of the Y-torque wheel motor is shown in Figure 7.11. Figure 7.12 shows the
unprocessed residual corresponding to Figure 7.4. This residual was generated with the
standard actuator FDF, i.e., the failure mode was not modelled explicitly. Comparing
Figures 7.11 and 7.12 we see that modelling the failure mode led to a residual that gives
a better indication of the failure and only simple lowpass filtering is needed to extract the
failure signature. The added complexity thus appears to be advantageous and further work
is necessary to determine how useful this approach is. Also, it is necessary to determine

whether this modelling will impair the filter’s ability to detect any failure mode.

ACES

Several attempts were made to design failure detection filters for ACES. The FDF requires
a state-space description of the system and as we have seen for ACES high order models
are needed to detect component failures. Identifying such a model is not a trivial task and

was beyond the scope of this work. A twelfth order model was tried without success.

7.4 Computational Burden

In this section we give a comparison of the approximate number of operations that is neces-

sary to implement generalized parity relations and failure detection filters. The computation

of
n
> aiz; (7.28)
=1
requires n multiplications and n —1 additions. However, because the time to do an addition

is usually much shorter than the time to do a multiplication, we will assume that n mul-
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Figure 7.11: Unprocessed FDF residual 75 for Y-torque wheel failure. The failure
mode was modelled by a second order system.
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Figure 7.12: Unprocessed FDF residual r5 for Y-torque wheel failure.
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tiplications and additions are needed to compute the sum. Thus, calling a multiplication
and addition an operation, n operations are needed to compute the given sum. Addition
of two scalar quantities is ignored. Sums like the one given in Equation (7.28) occur in
difference equations, e.g., parity relations, as well as in matrix-vector multiplications, e.g.,

the detection filter.

We consider residual generators designed to detect the failure of a single component. A

general description for a single sensor parity relation using n, lags is

") = ¥ + 305 Bt — )+ 3 auylt — ) (7.29)
j=1s=1 s=1

and the number of operations necessary to implement this is approximately
Nespr = Ng(Ny + 1). (7.30)

For a single actuator parity relation the roles of sensors and actuators are interchanged so

that

Nsapr = Nz(Ny + 1). (7.31)

The general description for the failure detection filter is giveﬁ by Equations (7.14) and

(7.15), and straight forward implementation of this requires

ngag = n(n 4+ ny + ny + 1) + 1y (7.32)

operations for a one dimensional residual, where n is the dimension of As. The filter is often
of dimension less than n, because the part of the dynamics that is unobservable from the
residual is automatically factored out during the design of the filter. For a filter designed
to detect sensor failures, the dynamics of the failure modes that must be ignored by the
filter also gets factored out. In many cases complete columns of By, Dsy,, and By, are zero

because the failure detection filter ignores certain measurements and inputs. As an example,
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for the Mini-Mast sensor filters, only the columns of By, and Dy, that correspond to the
specific sensor the filter was designed for had nonzero entries. Furthermore, the number
of operations can be decreased by diagonalizing the resulting A-matrix; if this is done and

assuming all poles are complex, only
N5af—diag = N(Ny + Ny + 3) + ny (7.33)

operations are needed. It is also possible to implement the filter as a difference equation
similar to that of a parity relation; in this case the factor 3 in the last expression changes
to 1. The number of operations for the failure detection filter is more than that of the
parity relations by approximately n(n, + 3) + n,, where n is of the same order as the
dimension of the plant. The factor nn, comes from computing the term B,y and, as we
noted earlier, often only one column of By, is nonzero so that the filter has approximately
3n more operations than the parity relation. This is a small price to pay for the increase in

performance.

7.5 Summary

In this chapter we conducted several failure detection experiments using the failure detection
filter. With some additional processing of the residual we showed that it is possible to get
good indications of actuator failures on the Mini-Mast. Comparison of the transfer functions
of the two residual generators also showed that the failure detection filter is less sensitive
to noise. The actuator failures that were detected can be regarded as a good measure of
the failure detection filter’s ability to detect actuator failures as these were not simulated
failures. Compared to single actuator parity relations the failure detection filter is the clear

winner.
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In the case of sensor failures the failure detection filter again performed better than single
sensor parity relations. In previous chapters we have shown several times that generalized
parity relations prefer a longer sampling period and often performed poorly at the baseline
sampling period of the Mini-Mast. The failure detection filter was tested only at the baseline
sampling period and it performed well for both actuator and sensor failures. This‘ can be

of great importance in applications where the control system requires fast sampling.
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Chapter 8

Conclusion

Space based stations put strict requirements on the reliability of the control system compo-
nents. Because these systems will be used for long unattended periods of time the control
system must be tolerant to the failure of its actuators and sensors. The reliability of the sys-
tem can be increased through hardware redundancy, but this leads to increased weight and
can be impractical when many components are used by the control system. The reliability
of the system can also be increased with analytical redundancy that uses the redundancy

that is present in the dynamics of the plant and the input-output histories.

Ideally one would require that a failure detection and isolation system be independent of
the mode of failure and it should also be applicable to both sensors and actuators. Two
methodologies satisfy these requirements: the Failure Detection Filter and the method
of Generalized Parity Relations. In this work we discussed the application of these two
methods experimental flexible space structures, the NASA Langley Mini-Mast and the
Marshall Space Flight Center ACES mast. Different sensor sets were considered and the

detection of actuator failures was also investigated.
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The performance of a reduced order model for the Mini-Mast that included the first five
modes of the plant (referred to as model-based relations) was compared to a set of parity
relations that was identified directly from input-output data (referred to as the identified
relations). The effect of the model order dnd sampling period on the performance of the

Residual Generator were also shown.

For the Mini-Mast, The first set of sensors consisted of the three displacement sensors at
the tip of the mast. These sensors measured the displacement of the tip relative to a fixed,
rigid structure that was built around it. The model-based residuals suffered from sensitivity
to noise and did not give reliable indications of the failures. The identified relations gave
good failure signatures on all the different failure modes that were simulated in the data.
Because all analytical redundancy techniques use a model of the plant, they all suffer from
mismatches between the model and the real plant. By identifying the coefficients of the
parity relations directly from input-output data the need for an accurate state-space model
of the plant disappears. Identifying the parity relations has the advanfage that it is easy
to increase the model of the order if the low order models that are typically used by the
control system give unacceptable performance. Using double sensor parity relations led
to no improvement for the model-based relations, while the identified relations showed a
significant improvement in the failure signature. It was also illustrated that the sampling
period had a significant effect on the performance of the Residual Generators; it was found
that the longer sampling periods gave better failure signatures. The reason for this improved
performance comes from the smaller frequency band that needs to be matched by a model

with a given order.

The second sensor set for the Mini-Mast consisted of two accelerometers and a gyro, all
mounted at the tip of the mast. A state-space model was not available for this set of

sensors so all the results apply to identified relations. Because of the wider bandwidths
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of these sensors it was found that we had to increase the order of the model to get good
performance from the Residual Generators. The single sensor parity relations performed
satisfactorily and the double sensor parity relations gave good failure signatures. Again,
increasing the sampling period resulted in a significant improvement of the failure signatures.
This combination of sensors also illustrated that it is possible to use sensors of mixed type

to construct parity relations.

A set of parity relations that was identified when the Mini-Mast was excited by bandlimited
signals performed poorly when applied to data that was recorded when the mast was driven
by wideband signals. The magnitudes of the input signals differed considerably so that the

poor performance is probably caused by the nonlinearities of the torque wheel actuators.

The detection of Mini-Mast actuator failures using Generalized Parity Relations proved to
be very difficult. It was found that the Residual Generators had very large gains associated
with the transfer functions from the measurements to the residual, making it extremely
sensitive to noise in the measurements. This resulted in residuals that were so noisy that it

completely obscured the contribution of the control input.

Identified Generalized Parity Relations were also used to monitor component failures on the
ACES mast. Both single sensor and double sensor parity relations needed 60 or more lags
to give acceptable performance. Nonlinear processing of the residuals improved the failure
signatures significantly. In some of the double sensor parity relation experiments the failure
of only one of the sensors could be detected because the contribution to the residual of the
other sensor is very small and thus masked by the noise. We have also showed that the
method used to identify the coefficients of the parity relation can have a significant effect

on the performance of the parity relation.

The failure detection filter performed very well for both sensor and actuator failures on
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the Mini-Mast. Some of the residuals for sensor failures were so good that no additional
processing was necessary. While generalized parity relations failed to detect actuator failures
on the Mini-Mast the failure detection filter detected all the failures. Furthermore, it was

found that the failure detection filter worked very well with short sampling periods.

The work concluded with an approximate analysis of the computational burden for the two
residual generators. The number of operations for the failure detection filter is more than

that of the generalized parity relation by a linear term.

Future Work

Though FDI has been studied for many years, several problems remain unsolved. A brief
summary of some problems that need further investigation is given here. It was pointed
out that an increase in the sampling period led to improved failure signatures. Although
no examples were given it was found that increasing the sampling period beyond a certain
point yielded no improvement. It thus appears that there might be an optimum sampling
period. Even if we can find such an optimal sampling period analytically, it may not be an
acceptable sampling period for use by the controller. It is easy to derive parity relations
when the sampling period used by the Residual Generator is an integer multiple of the
sampling period used by the controller. However, the analysis of the system is complicated
because the resulting Residual Generator is not time invariant any more. Because of the
large improvement that can be realized by the selection of a good sampling period it is an

area that warrants further investigation.

It was pointed out at the end of Section 2.2 that the construction of double sensor parity
relations leads to a choice of two relations. An example of this was given in Section 3.6
where we saw that the use of the second relation gave better failure signatures. We have

also showed that in some cases a double sensor parity relation fails to indicate the failure
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of one of the sensors it was designed for. Analysis of double sensor parity relations may
lead to additional insight to why this happened and maybe hint at which relations should

be used for best results.

When doing model validation the residual is studied in great detail as this signal contains
a wealth of information about the identified model. Thus we see that model validation is
similar in nature to failure detection. Robust identification techniques are constantly being
developed. Because analytical redundancy methodologies all rely on a model of the plant
robustness is always an issue. The applicability of these robust identification techniques to

failure detection must therefore be investigated.
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Appendix A

Second order system analysis

In this appendix we will find the discrete-time description of a continuous-time second order
system. Let the continuous-time system be

w?

y(s) = s 4+ 2Cw:s + w2 wus),

(A1)

where w, is the natural frequency and ¢ < 1 the damping ratio. A continuous-time state-

space description is (see Chen [3}, chapter 6)

0 -—w? w?
z(t) = z(t) + u(t), (A.2)
1 —2Cwn 0
y(t) = [0 1]=() (A.3)
= c'z(t). (A4)

The discrete-time state-space description is given by Equations (2.8) — (2.11). Let the

damped natural frequency be denoted by

wg =wpy/1-(2. (A.5)
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Evaluating the equations for A and B we get

11 412
A = (A.6)
021 Q22
(wp —w?
_ T, cos(wgTy) + 357+ sin(waTs) i sin(waTs) an
de sin(wqyTs) cos(wqTs) — %%@ sin(wqTy)
and
bi1
B = (A.8)
ba1

2w, — e=CwnTs (QCwn cos(waTy) + 2n2C = 1) Sin(wde)>

- Vi-( . (A9)
~¢wnTy in(wiT)

1— e~¢wnT, (cos(wde)+ Csmrl———i)de )

The numerator and denominator polynomials are found by evaluating Equation (2.68)

y(z) = c'(2I- A)  bu(z) (A.10)

_ bo1271 + (a121b11 — ay1bg1)z2 . (A.12)
1 — (a1 + a22)27! + (a11a22 — G12021)2~
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Appendix B

Mini-Mast state-space model

The continuous-time state-space model of the Mini-Mast is given by

Ay O By
z(t) = z(t) + u(t) (B.1)
O As B;

where

(B.2)
—28.920733 —0.347406

(B.4)

(B.3)
—28.839048 —0.228771

—729.718377 —3.873707
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Ag= : (B.5)
—1477.941136 -—1.829934
0 1
A5 = ) ) (BG)
—1501.392005 —0.774956
0 00
B; = , (B.7)
0 -—-0.006166 0
0 00
B, = : (B.8)
—0.004122 0 O
0 0 0
B3 = ) (Bg)
0 0 0.194500
0 0 0
B, = , (B.10)
—0.002723 -0.002723 0
0 0 0
Bs = . (B.11)

0.002549 —0.002549 0O
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The output matrix for the set of displacement sensors at the tip of the mast is

4.846400 0 -—5.821079 0 4.846400 0  0.544624 0  1.069679 O
C=| _0.798394 0 5.784700 0 4.911925 0 —1.740127 0 —1.302644 0
~3.724298 0 -0.288348 0 4.633496 0 —1.597996 0 -—0.142804 O

(B.12)

The D matrix is

D =0. (B.13)
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